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Introduction
• The Oil-Vinegar family of Multivariate Public Key 

Cryptosystems consists of three families: 
– balanced Oil-Vinegar
– unbalanced Oil-Vinegar 
– Rainbow

• a multilayer construction using unbalanced Oil-Vinegar at each layer

• There have been some previous works to efficiently 
implement multivariate signature schemes, e.g., 
– TTS on a low-cost smart card
– minimized multivariate PKC on low-resource embedded systems
– some instances of MPKCs
– SSE implementation of multivariate PKCs on modern x86 CPUs
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Introduction
• Currently the best hardware implementations of Rainbow 

signature are:
– A parallel hardware implementation of Rainbow signature [8]

• the fastest work (not best in area utilization), 
• which takes 804 clock cycles to generate a Rainbow signature;

– A hardware implementation of multivariate signatures using 
systolic arrays [9], 

• which optimizes in terms of certain trade-off between speed and 
area.

[8] S. Balasubramanian, et al. Fast multivariate signature generation in 
hardware: The case of Rainbow. FPCC 2008.

[9] A. Bogdanov, et al. Time-area optimized public key engines: MQ 
Cryptosystems as replacement for elliptic curves? CHES 2008.
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Introduction
• The major computation components in generation of 

Rainbow signature include: 
– Multiplication of elements in finite field;
– Multiplicative inversion of elements in finite fields; 
– Solving system of linear equations over finite fields. 

• Therefore, we focus on further improvement in these 
three directions.
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Our Focus and Contributions
• The focus of our work

– to further speed up hardware implementation of Rainbow 
signature generation

– without consideration of the area cost

• Our contributions: 
– the improvement of the multiplication over finite fields; 
– the development of a new parallel hardware design for the 

Gauss-Jordan elimination to solve a n×n system of linear 
equations with only n clock cycles; 

– the design of a new partial multiplicative inverter; 
– other minor optimizations of the parallelization process. 

Introduction
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• Rainbow scheme belongs to the class of Oil-
Vinegar signature constructions. 

• The scheme consists of a quadratic system of 
equations involving Oil and Vinegar variables 
that are solved iteratively. 

• The Oil-Vinegar polynomial can be represented 
by the form

Overview of Rainbow Signature Scheme

1, ,l l l l

ij i j ij i j i i
i O j S i j S i S

x x x x xα β γ η
+∈ ∈ ∈ ∈

+ + +∑ ∑ ∑

Background
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• Private key
– Two randomly chosen invertible affine linear transformations L1

and L2

– The central mapping F
• F has u-1 layers of Oil-Vinegar construction
• The l -th layer: ol polynomials 

– Oil variables:
– Vinegar variables:

Overview of Rainbow Signature Scheme (continued)

1 1
1 : n v n vL k k− −→

2 : n nL k k→

{ | }i lx i O∈
{ | }j lx j S∈

Background
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• Public key
– The finite field k
– The n-v1 polynomial components of

• Signature generation
– The message:
– The signature is derived by computing

1 2F L F L=

Overview of Rainbow Signature Scheme (continued)

1 1 1 1
2 1 ( )F L F L Y− − − −=

1

11( ,..., ) n v
n vY y y k −
−= ∈

Background
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• Signature generation
1. Compute

2. To solve the equation

and obtain a solution

satisfying 

Overview of Rainbow  Signature Scheme (continued)

1
1 ( )Y L Y−′ =

1 1 1 1
2 1 ( )F L F L Y− − − −=

( )F X Y ′=

( )F X Y ′=

1( ,..., )nX x x=

Background
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• Signature generation
3. Compute

– Then            is the signature for message       . 

• Signature verification
– Suppose the signature
– Compute
– If              holds, the signature is accepted;

otherwise, rejected. 

Overview of Rainbow Signature Scheme (continued)

1
2 1( ) ( ,..., )nX L X x x− ′ ′′ = =

1 1 1 1
2 1 ( )F L F L Y− − − −=

X ′ Y

X ′
( )F X Y′ ′=

'Y Y=

Background
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Parameters of Rainbow Adopted in Our Work
– Suggested in [14], security level above 280.

[14] J. Ding, B.Y. Yang, C.H.O. Chen, M.S. Chen, and C.M. Cheng.
New differential-algebraic attacks and reparametrization of Rainbow.
ACNS 2008, pp. 242-257 

Background

Parameter Rainbow
Ground field GF(2^8)
Message size 24 bytes
Signature size 42 bytes

Number of layers 2
Set of variables 
in each layer

(17, 12)
( 1, 12 )
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Proposed Hardware Design for 
Rainbow Signature

• Overview of our Hardware Design
– Flowchart to generate Rainbow signature:  

– Computing affine transformations, L1
-1  and L2

-1.
– Evaluating multivariate polynomials in  F maps.
– Solving system of linear equations.
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Choice of Irreducible Polynomials
• The choice of the irreducible polynomials for the finite 

field is a critical part of our hardware design, since
– it determines the structure of the finite field,
– and affects the efficiency of the operationsover the finite field.

• The irreducible polynomials for GF(2^8) can be 
expressed as 9-bit binary digits with the 
form                       , where 0 < k < 8.
– There are totally 16 candidates.

• We evaluate the performance of the multiplications 
based on these irreducible polynomials respectively. 
– By comparing the efficiency of signature generations basing on 

different irreducible polynomials, 

is finally chosen.

8 ... 1kx x+ + +

8 6 3 2 1x x x x+ + + +
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Efficient Design of Multiplication
of Three Elements

• In Rainbow signature generation, we 
notice that 
– there exist not only multiplication of two 

elements 
– but also multiplication of three elements
– for example: 

• the evaluation of Oil-Vinegar polynomials

• Let ThreeMult(v1,v2,v3) stand for multiplication 
of three elements, where v1, v2, v3 are operands.  

1, ,l l l l

ij i j ij i j i i
i O j S i j S i S

x x x x xα β γ η
+∈ ∈ ∈ ∈

+ + +∑ ∑ ∑
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Efficient Design of Multiplication
of Three Elements

• The new design is based on a new observation that, 
– in multiplication of elements over GF(28), it is

much faster to multiply everything first then perform modular 
operation 

than the other way around.

– This is quite anti-intuitive, and it works only over 
small fields. 

– This idea, in general, is not applicable for large fields.
• Therefore, we design new implmentation to 

speedup multiplication of three elements. 

7

0
( ) ( ) ( ) ( )(mod( ( ))) i

i
i

d x a x b x c x f x d x
=

= × × =∑
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Multiplicative Inversion and 
Partial Multiplicative Inversion

• The multiplicative inverse over the finite field is a crucial but 
time-consuming operation in multivariate signature. 

• An optimized design of the inverter can really help to 
imporve the overall performance. 

• Suppose f(x) is the irreducible polynomial and β is an 
element over GF(2^8), according to the Fermat's theorem, 
we have

• Since

then 1 2 4 8 16 32 64 128.β β β β β β β β− =

8 2 3 4 5 6 72 2 2 2 2 2 2 2 ,2− = + + + + + +

8 82 1 2 2 254,  and  .β β β β β− −= = =
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Multiplicative Inversion and 
Partial Multiplicative Inversion

• We adopt the three-input multiplier to design the partial 
inverter. 

• Note that
and 

– where ThreeMult(v1,v2,v3) stands for multiplication of three 
elements, where v1, v2, v3 are operands.  

– Let

– We call the triple

the partial multiplicative inversion of β . 

1 128
1 2( , , ),ThreeMult S Sβ β− =

1 2 4 8 16 32 64 128,β β β β β β β β− =

2 4 8
1 ( , , ),S ThreeMult β β β=

16 32 64
2 ( , , )S ThreeMult β β β=

128
1 2( , , )S S β
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Solving System of Linear Equations
Algorithm 1 Solving a system of linear equations 

Ax = b with 12 iterations, where A is a 12 ×12 matrix
1: var
2: i: Integer;
3: begin
4: i := 0;
5: Pivoting(i = 0);
6: repeat
7: Partial_inversion(i), Normalization(i), Elimination(i);
8: Pivoting(i+1);
9: i:= i+1;
10: until i = 12
11: end.

the optimized Gauss-Jordan elimination with 
12 iterations, which consists of pivoting, 
partial multiplicative inversion, normalization 
and elimination in each iteration. 

They are designed to perform simultaneously. 

it takes only one clock cycle to 
perform one iteration.
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The architecture for solving system of linear equations.

0,0 0,1 0,11 0,12

1,0 1,1 1,11 1,12

11,0 11,1 11,11 11,12

...
...

...,...,...,...,...,...
...

a a a a
a a a a

a a a a
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a a a

a a a
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⎜ ⎟
⎜ ⎟
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0,12

1,12

11,12

10...00

01...00
0...,...,...,...

00...01

a

a

a

⎛ ⎞′′′
⎜ ⎟
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⎜ ⎟
⎜ ⎟
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Solving System of Linear Equations

There exist three kinds of cells in 
the architecture:
I: partial multiplicative inversion;
Ni: normalization; 
Eij: elimination;

Totally, 1 I, 12 Ni, 132 Eij cells. 

The matrixes below are used to 
illustrate how the matrix changes 
in each clock cycle. 

The left-most matrix is in 
the  first clock cycle.

The i-th matrix is in the  
i-th clock cycle.
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Pivoting operation

0,1 0,12

1,12

2,12

3,12

11,1 11,12

1 ...

0 0 ...

0 0 ...

0 3 ...
0...,...,...
0 ...

a a

a

a

a

a a
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⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

Solving System of Linear Equations

In each clock cycle, the 
pivot element is sent to I cell 
for partial multiplicative 
inversion. 

The pivot row is sent to Ni 
for normalization.

The other rows except the 
pivot row are sent to Eij for 
elimination. 

Then, I, Ni, and Eij cells can 
execute in parallel. 

Example:Example: before the second iteration, 

The second row is the pivot row, but the pivot element is zero.

The fourth row can be chosen as the new pivot row since a31 is nonzero. 

Then  a31 is sent to I cell, the fourth row is sent to Ni, the other rows are sent to Eij.

The computation of one iteration can be performed with one clock cycle. 
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Normalizing operation

2 4 8
1 ( , , ),S ThreeMult β β β=

16 32 64
2 ( , , )S ThreeMult β β β=

128
4 ,( )iTwoMultS Rβ=

1 2 4( , , )iNOR ThreeMult S S S=

1 2 4 8 16 32 64 128,β β β β β β β β− =

( Ri: the i-th element in the pivot row; )

Solving System of Linear Equations

S1 and S2 are executed in I cell. 

S4 and NORi are executed in Ni cell.

S1, S2 and S4 can be implemented in 
parallel in each iteration. 
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Eliminating operation

2 4 8
1 ( , , ),S ThreeMult β β β=

16 32 64
2 ( , , )S ThreeMult β β β=

128
3 ( , ), ijThS RreeMult Cβ=

1 2 3( , , )ij ijELI a ThreeMult S S S= +

( Rj: the j-th element in the pivot row;  
Ci: the i-th element in the pivot column; )

Solving System of Linear Equations

S1 and S2 are executed in I cell. 

S3 and ELIij are executed in Eij cell.

S1, S2 and S3 can be implemented in 
parallel in each iteration. 
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Original design VS Optimized design
Solving System of Linear Equations

The critical path of the original 
Gauss-Jordan elimination is five. 

The critical path of our design is 
two. 

Therefore,  our  optimization 
reduce the critical path from five 
to two. 
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Affine Transformations and 
Polynomial Evaluations

Two affine Transformations

are computed by invoking vector addition and 
matrx-vector multiplication. 
Two-layer Oil-Vinegar constructions include 24 
Oil-Vinegar polynomials that are evaluated by 
invoking multiplication and addition.

The Oil-Vinegar polynomial: 

1 24 24 1 42 42
1 2,: :L k k L k k− −→ →

1, ,l l l l

ij i j ij i j i i
i O j S i j S i S

x x x x xα β γ η
+∈ ∈ ∈ ∈

+ + +∑ ∑ ∑
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Table 2  Number of multiplications in affine 
transformations and polynomial evaluations

Components Number of multiplications

L1‐1 transformation 576

The first 12 polynomial evaluations 6324

The second 12 polynomial 
evaluations

15840

L2‐1 transformation 1764

Total 24504
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Table 3  Number of Multiplications in Components 
of Polynomial Evaluations

The first layer The second layer

ViOj 2448 4320

ViVj 3672 11160

Vi 204 360

Total 6324 15840
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Implementations and Experimental Results
• Our design is programmed in VHDL

– and implemented on a EP2S130F1020I4 FPGA device, 
– which is a member of ALTERA Stratix II family.

• All the experimental results mentioned in this section are 
extracted after place and route.

• Table 4 summarizes the performance of our implementation 
of Rainbow signature measured in clock cycles, 
– which shows that our design takes only 198 clock cycles to generate a 

Rainbow signature.
– In other words, our implementation takes 3960 ns to generate a 

Rainbow signature with the frequency of 50 MHz. 
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Table 4  Running time of our implementation
in clock cycles

Step No.  Components Clock cycles

1 L1‐1 transformation 5

2 The first 12 polynomial evaluations 45

3 The first round of solving system of 
linear equations

12

4 The second 12 polynomial evaluations 111

5 The second round of solving system of 
linear equations

12

6 L2‐1 transformation 13

Total 198
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Table 5  FPGA implementations of the multiplier, 
partial inverter, Gauss-Jordan elimiation

Components Combinational 
ALUTs

Dedicated 
logic 

resisters

Clock 
cycles

Running 
time (ns)

Multiplier 37 0 1 10.768

Partial 
inverter

22 0 1 9.701

Gauss‐Jordan 
elimination

21718 1644 12 240

(with a frequency of 50 MHz)
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Table 6  The resource consumptions for each cell in the 
architecture for solving system of linear equations

Cell Used for Two‐input 
multiplier

Three‐
input 

multiplier

Adder

I cell Partial inversion 0 2 0

N cell Normalization 1 1 0

E cell Elimination 0 2 1
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Table 7  Clock cycles and running time of 
two affine transformations

Components Clock cycles Running time 
(ns)

L1 offset 1 20

L1 ‐1 4 80

L2 offset 1 20

L2 ‐1 12 240

Total 18 360

(with a frequency of 50 MHz)
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Table 8  Clock cycles and running time of 
polynomial evaluations

(with a frequency of 50 MHz)

Components ViOj ViVj Vi Total 
cycles

Total 
time
(ns)

The first layer 17 26 2 45 900

The second 
layer

30 78 3 111 2220
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Table 9  Comparison of solving system of 
linear equations with matrix size 12 × 12

Scheme Clock cycles

Original Gauss‐Jordan elimination 1116

Original Gaussian elimination 830

Wang‐Lin's Gauss‐Jordan elimination [12] 48

B. Hochet's Gaussian elimination [13] 47

A Bogdanov's Gaussian elimination [11] 24

Implementaion in this paper 12

Comparison with Related WorkComparison with Related Work



35

Table 10  Performance comparison of 
signature schemes

Scheme Clock cycles

en‐TTS [5] 16000

Rainbow (42, 24) [9] 3150

Long‐message UOV [9] 2260

Rainbow [8] 804

Short‐message UOV [9] 630

This paper 198
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Conclusions
• We propose a new optimized hardware implementation of 

Rainbow signature scheme, 
– which can generate a Rainbow signature with only 198 clock cycles, 
– a new record in generating digital signatures,
– four times faster than the 804-clock-cycle implementation in [8], 

• Our main contributions include three parts
– First, we develop a new parallel hardware design for the Gauss-

Jordan elimination, and solve a 12 ×12 system of linear equations 
with only 12 clock cycles. 

– Second, a novel multiplier is designed to speed up multiplication of 
three elements over finite fields. 

– Third, we design a novel partial multiplicative inverter to speed up the 
multiplicative inversion of finite field elements. 
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Conclusions
• Note that our implementation focuses solely on speeding 

up the signing process, 
– in terms of area, we compute the size in gate equivalents (GEs), 

about 150,000 GEs, 
– which is 2-3 times the area of [8].

[8] S. Balasubramanian, et al. Fast multivariate signature 
generation in hardware: The case of Rainbow. FPCC 2008.



38

Thank youThank you
Contact us via email: 
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