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Abstract. The U.S. National Institute of Standards and Technology (NIST) has
designated ARM microcontrollers as an important benchmarking platform for its
Post-Quantum Cryptography standardization process (NISTPQC). In view of this,
we explore the design space of the NISTPQC finalist Saber on the Cortex-M4 and its
close relation, the Cortex-M3. In the process, we investigate various optimization
strategies and memory-time tradeoffs for number-theoretic transforms (NTTs).
Recent work by [Chung et al., TCHES 2021 (2)] has shown that NT'T multiplication
is superior compared to Toom—Cook multiplication for unprotected Saber imple-
mentations on the Cortex-M4 in terms of speed. However, it remains unclear if
NTT multiplication can outperform Toom—Cook in masked implementations of Saber.
Additionally, it is an open question if Saber with NTTs can outperform Toom—-Cook
in terms of stack usage. We answer both questions in the affirmative. Additionally, we
present a Cortex-M3 implementation of Saber using NTTs outperforming an existing
Toom—Cook implementation. Our stack-optimized unprotected M4 implementation
uses around the same amount of stack as the most stack-optimized Toom—Cook
implementation while being 33%-41% faster. Our speed-optimized masked M4 imple-
mentation is 16% faster than the fastest masked implementation using Toom—Cook.
For the Cortex-M3, we outperform existing implementations by 29%-35% in speed.
We conclude that for both stack- and speed-optimization purposes, one should base
polynomial multiplications in Saber on the NTT rather than Toom—Cook for the
Cortex-M4 and Cortex-M3. In particular, in many cases, multi-moduli NTTs perform
best.
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1 Introduction

Shor’s algorithm [Sho97] threatens all widely deployed public-key cryptography as it solves
the integer factorization and the discrete logarithm problems on a quantum computer.
Therefore, NIST has called for proposals to replace their existing standards for digital
signatures and key encapsulation mechanisms (KEMs) [NIS]. We are currently in the third
round of the process, where 7 finalist schemes and 8 alternate schemes remain [AASA™20].
Of the 7 finalists, 4 are KEMs: Classic McEliece [ABCT20], a code-based scheme, plus
Kyber [ABD20b], NTRU [CDH"20], and Saber [DKRV20], which are all lattice-based
with similar performance characteristics.

Saber is based on the module learning with rounding (M-LWR) problem. Its arithmetic
operates in the polynomial ring R, = Zg[z]{2%%¢ + 1) with ¢ = 2'® and n = 256. One
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of Saber’s distinguishing features, compared to Kyber [ABDT20b], is the power-of-two
modulus ¢ = 2'* (while Kyber uses the prime modulus 3329). Despite the architectural
friendliness of power-of-two, the major disadvantage is the applicability of number-theoretic
transforms (NTTs). Recent work by Chung et al. [CHK*21] has shown that Saber can still
profit from NTT multiplications by switching to a larger prime modulus allowing NTTs.
Indeed, Saber with NTTs can also be significantly faster than Toom—Cook on the major
NIST software targets: ARM Cortex-M4 and Haswell with AVX2.
We address three questions in this paper:

1. The Chung et al. [CHK*21] implementation has a large memory footprint. Memory
usage can prohibit implementations from being used on microcontrollers with much
less memory available than the development boards commonly used in the literature.
Since the implementation solely uses stack memory (which is desirable for embedded
implementations), reducing the memory consumption corresponds to optimizing the
stack usage. Therefore, we explore how well NTT-based Saber performs stack-wise on
the Cortex-Mj. In particular, can we achieve a smaller memory footprint for Saber
with NTTs compared to the [MKV20] stack-optimized Toom—Cook implementation?

2. The [CHK™21] implementation relies on one of the multiplicands being small and
only computes the correct 25-bit result. This is true for the secrets in Saber, but
it does not apply to masked implementations in which the secret is arithmetically
shared modulo ¢ (e.g., [VBDK™20]). How does Saber with NTTs perform for masked
implementations, in particular, can they outperform masked Toom-based Saber from
[VBDK™20] in speed and stack usage?

3. While the Cortex-M4 is the primary microcontroller optimization target of NIST,
its cheaper predecessor, the Cortex-M3 remains widely deployed, e.g., in hardware
security modules (HSMs) like the STA1385'. However, the Cortex-M3 is slightly less
powerful than the Cortex-M4 especially in terms of features critical to polynomial
multiplication. In particular, long multiplications smull and smlal are not executed
in constant time and, consequently, cannot be safely used when handling secret data.
The Cortex-M4 implementation heavily relies on these instructions. So the open
question is: Should Saber implementations targeting the Cortex-M3 use NTTs?

For Question 1, we propose an NTT-based implementation with a composite modulus
q" = qoq1, with qo and ¢; coprime and both NTT-friendly. We can thus define an NTT
modulo ¢’, enabling a very stack efficient implementation competitive in memory usage
and at least 30% faster compared to the most stack-optimized Toom—Cook implementation.

We answer Question 2 in the affirmative by computing a 32-bit NTT and a 16-bit NTT.
As long as the product of the moduli is bounding the coefficients of the masked product,
the NTT-based multiplication can be viewed as a generic multiplier for Saber.

Finally, we answer Question 3 also in the affirmative. Here we have two natural
alternatives in NTT-based polynomial multiplication using only 16-bit multiplications.
One can use 32-bit NT'Ts but emulate the long multiplications (used already to implement
Dilithium which requires 32-bit NTTs [GKS21]). Or one can adopt the approach of the
AVX2 implementation of [CHK'21] and use two 16-bit NTTs which can be efficiently
implemented while avoiding long multiplications. The result is then recombined using the
Chinese remainder theorem for integer rings. We show that both approaches are faster than
Toom—Cook and the latter approach is the fastest. Furthermore, we also show that stack
optimization on Cortex-M4 can be applied to the 16-bit NTT approach on Cortex-M3.

Contribution. 'We show that, for the Cortex-M3 and Cortex-M4, Toom—Cook is not useful
for implementing Saber, and one should always use NTT multiplications. Firstly, the most
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stack-efficient implementations are using NT'Ts. Secondly, we exhibit two NTT-based Saber
implementations on the Cortex-M3, both outperforming Toom—Cook. Lastly, masked
Saber implementations are also best implemented using NTTs regardless of whether we
value speed, memory or both.

In the process, we point out an overlooked stack optimization with multi-moduli NTTs.
The optimization justifies an unconventional use of composite-modulus for unmasked
Saber and unequal-size NTTs for masked Saber that have not been implemented before.
Furthermore, we correct a misunderstanding regarding negacyclic convolutions by providing
the actual if-and-only-if condition. Lastly, we justify the use of Cooley—Tukey butterflies
for the inverse of negacyclic NTTs.

Code. All our implementation are open source and available at https://github.com/
multi-moduli-ntt-saber/multi-moduli-ntt-saber.

Related work. There is a line of work optimizing Saber for the Cortex-M4 [KRS19,
MKV20, CHK21] using Karatsuba, Toom-Cook, and lately also NTTs. A masked Saber
is presented by Van Beirendonck et al in [VBDK™20]. Other NISTPQC third-round
candidates have been implemented for the Cortex-M3 and M4. The ones most relevant to
us are the constant-time NTTs from Greconici et al. [GKS21] and the stack optimizations
by Botros et al. [BKS19]. Composite modulus NTTs were earlier studied in the context of
side-channel protections for lattice-based schemes by Heinz and Péppelmann [HP21].

Structure of the paper. This paper is structured as follows: Section 2 introduces Saber,
ARM Cortex-M4 and Cortex-M3, and Montgomery multiplication. In Section 3, we
present mathematics for NTTs implemented in this paper. In Section 4, we go through
implementation details of MatrixVectorMul with different emphases. In Section 5, we
present the performance of our implementations, and give some t-test results.

2 Preliminaries

This Section is organized as follow: First, we recall the key encapsulation mechanism
Saber in Section 2.1. Section 2.2 introduces the architectures targeted in this paper:
Cortex-m4 and Cortex-M3. Section 2.3 describes the Montgomery multiplication that is
used throughout our implementations.

2.1 Saber

Saber [DKRV20] is a NISTPQC finalist candidate lattice-based key encapsulation mecha-
nism. It is based on the Module Learning With Rounding (M-LWR) problem on the ring
Ry = Zq[x] (2 + 1). For all parameter sets ¢ = 2'* and n = 256.

Algorithms 1-3 are the CPA-secure scheme’s keygen, encryption, and decryption
and follow the submission material [DKRV20]. Here Sample;, samples from the uniform
distribution, Sample z samples from a binomial distribution, and Expand expands a seed
to a uniform matrix of polynomials.

Saber’s most time-consuming operation in key generation and encryption is the matrix-
vector multiplication of polynomials A” - s and As’. In decryption, the most expensive
operation is the inner product ¥'7 - s. We do not further discuss Saber’s CCA-secure
KEM construction, which uses a variant of the Fujisaki-Okamoto (FO) transform due to
Hofheinz-Hovelmanns-Kiltz [HHK17]. We note that Saber does require re-encryption in
the decapsulation, and, therefore, improving the encryption also improves decapsulation.
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Table 1: Saber Parameter Sets

name ‘ l ‘ T =2°7 ‘ I
Lightsaber | 2 23 10
Saber 3 24 8
Firesaber | 4 26 6

Parameters. The module dimension [/, the rounding parameter T, and the secret dis-
tribution parameter p varies according to the parameter sets Lightsaber, Saber, and
Firesaber (respectively targeting the NIST security levels 1, 3, and 5). See Table 1 for a
summary. Hence, MatrixVectorMul is computing the product of an [ x [ matrix and an
I x 1 vector, whereas InnerProd is computing the inner product of two [ x 1 vectors.

v’ < b7 (s’ mod p)
: ¢+ Round(v' — 2¢71m)

Algorithm 1 Saber Key Generation Algorithm 2 Saber CPA Encryption
Output: pk = (seedy, b), sk = (s) Input: m,r, pk = (seed,b)
1: seedy < Sampley () Output: ct = (V)
2: A € RIX! « Expand(seed ) 1. A€ R.*! + Expand(seed,)
3 s€ Rfl < Sampleg() 2: s: € RfI — Sa.mgleB(r)
4: b+ Round(AT - s) 3: b’ < Round(As’)
4
5

Algorithm 3 Saber CPA Decryption

Input: ct = (¢, V'), sk = (s)
Output: m

1: v+ bT(s mod p)

2: m < Round(v — 22" “T¢ mod p)

2.2 ARM Cortex-M4 and Cortex-M3

The ARM Cortex-M4 is selected by NIST as a standard embedded platform to evaluate
candidates (including Saber) in the NISTPQC process. For both scientific curiosity and
practical reasons, we also implement Saber on the cheaper and also common Cortex-M3 to
explore the variation in performance when some instructions are not supported or can only
be used for secret-unrelated computations. The Cortex-M4 implements the ARMv7E-M
architecture. Some of its most prominent features are as follows:

e 14 General purpose registers. There are 16 registers, named rO-ri15. Except
for the stack pointer (r13) and the program counter (r15), all other registers are
general purpose registers.

e Floating-point registers. There are 32 single-precision floating-point registers
that can also be used as a low-latency cache (cf. [ACCT21, CHK'21].)

e Cycles for load and store instructions. Store instructions are always one cycle.
A sequence of h loads with no dependency is always h + 1 cycles.

e Single cycle long multiplications. Long multiplications {u,s}mull and their
accumulating counterparts {u, s}mlal are always one cycle.

e Barrel shifter. Shifts and rotates (asr, 1sl, 1sr, and ror), come at no extra cost
when used as the “flexible second operand” of a standard data-processing instruction.
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e SIMD instructions. Arithmetic instructions operating on registers as chunks of 8-
bit or 16-bit elements. {u,s}{add, sub}{8, 16} add up elements as packed 8-bit or 16-
bit elements. smul{b,t}{b,t} multiply specified halves of registers. smla{b,t}{b,t}
accumulates products of specified halves of registers into a register. smlad{x}
accumulates two 16 x 16 = 32-bit multiplications into a register. pkh{bt,tb} pack
two half words into a word.

The ARM Cortex-M3 implements the ARMv7-M architecture. The most important
differences between Cortex-M3 and Cortex-M4 regarding constant-time implementation of
Saber with NTTs are as follows [ARM10]:

e No floating-point registers. There is no FPU, hence, we will experience more
overhead when spilling registers.

e Early-terminating long multiplications. Long multiplications (and the variants
with accumulation) {u,s}mull, {u,s}mlal are early-terminating instructions that
cannot be used for computing on secret data.

e No SIMD instructions. There are no operations either treating registers as packed
8-bit or 16-bit elements or operating on specific halves of operands.

2.3 Montgomery multiplication

We employ Montgomery multiplication for computing mMul(a,bR mod *Q) = ab mod
+Q [Mon85] where b is a known constant, R is a constant that is architecture-friendly and
coprime to Q, and mod* is the signed modular reduction giving values in [—3,3). The

272
computation of ab mod *Qq is
ab mod jEQ =hi (a . (bR mod jtQ) +Q-lo (Qprime -lo (a . (bR mod ﬂtQ))))

where Qprime = —Q~ ! mod *R, and lo and hi are extractions of the lower logy R bits and
upper log, R bits, respectively. In our implementations, we use either R = 2'¢ or R = 232,

3 Number-Theoretic Transform

Number-theoretic transforms (NTTs) are critically important for efficient long multiplica-
tions. The most important works on integer multiplication [SS71, Fiir09, HVDH21] use
NTTs as basic building blocks. NTTs are so critical to the performance of polynomial
multiplications that the NISTPQC 3rd round candidates Dilithium, Falcon, and Kyber
wrote NTTs into their specifications [ABDT20b, ABD*20a, FHK'17]. In addition, the
candidates NTRU, NTRU Prime, and Saber [DKRV20, CDH 20, BBC"20] can be sped
up with NTTs [ACCT21, CHK*21].

In this section, we go over the mathematics for NTTs in their abstract form while
maintaining the consistency of notations with the implementation details in Section 4. All
the formulations are known in the literature with various abstractions.

An invertible size-n NTT taking a degree-(n — 1) polynomial from Z,,[z]fz™ — (") is
defined if and only if the following conditions are satisfied:

1. Divisibility: Suppose m admits the prime factorization m = pgo ph. pzk_‘ll, then n

must divide 0(m) == ged(po — 1,p1 — 1,...,pr_1 — 1) [AB74, Theorem 1.]%.

2. Invertibility: ¢ must be invertible in Z,, [CF94].

2 if m = qoq1 with gcd(qo,q1) = 1, n divides 0(m) if and only if n divides both 0(go) and 0(q1).
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Condition 1. enables NTTs over Z,,[z]/(x™ — 1) and Condition 2. extends the definition
t0 L [x] z™ — (™). Since 0(8192) = 1, Saber’s coefficient ring is unfriendly for NTTs.
We also note that the condition 0(m) can be generalized to finite commutative rings
by [DV78, Theorem 4.]. In Section 3.2.1, we adopt a more general definability about
commutative rings (without requiring finiteness) for pointing out the connection to the
Chinese remainder theorem for rings.

The Chinese remainder theorem (CRT) for (commutative) rings. Let R be a com-
mutative ring, I; be ideals of R so that I; + I; = R for @ # j, and § be the Kronecker
delta. Section 3 is all about the CRT in the abstract sense that the formulae are various
instantiations of the isomorphism:

n—1 n—1 n—1
qS:R/(ﬂ Ii> = [[Rr/E, é:a+ <ﬂ Ii> —(a+1Ip,a+1,...;a+T,_1) (1)
=0 =0 =0

[Fiir09, Theorem 2.4]. The inverse can be written as

n—1 n—1 n-l
o I R/t — R/<ﬂ L»), 07" ¢ (@0, ) Y il )
1=0 =0 =0

where the unique (r9,71,...,7,—1) satisfies r;7; = d;;7; and Z?:_Ol r; =1 [Bou89, Propo-
sition 10 - (b), Section 8.11, Chapter I]. Note that the existence of (rg,r1,...,7,—1) is
equivalent to the existence of (Ig, I1,...,I,—1). We will then review how the divisibility
and invertibility conditions translate into ¢ and ¢! by relating them to r;.

This section is organized as follows: Section 3.1 introduces how to combine integer
coefficient rings by explicit CRT computations. Section 3.2 introduces the NTT over integer
rings and characterizes the NTT as the CRT for rings. Section 3.3 defines polynomial
multiplication modulo x™ — 1. Section 3.4 introduces the discrete weighted transform for
computing polynomial multiplication modulo ™ —{™ and the "twisting" from (mod x™—(")
to (mod z™ — 1). Section 3.5 discusses Cooley—Tukey and Gentleman—Sande fast Fourier
transforms. Finally, Section 3.6 explains how to compute NTTs for NTT-unfriendly rings
and Section 3.7 introduces incomplete NTTs.

3.1 Explicit Chinese remainder theorem computations

Explicitly computing a number from its remainders modulo a small number of coprime
moduli ¢; is an “Explicit Chinese Remainder Theorem” computation. There are basically
two known algorithms: [MS90, Theorem 23] which resembles Lagrangian interpolation,
and [CHK 21, Theorem 1] which resembles more divided-difference interpolation.

We follow the latter here. Let ¢, qo, g1 be pairwise coprime and m; := qo_1 mod® q1-
For the system u = ug (mod qo), v = u; (mod ¢q1), where |ug| < qo/2, |u1] < ¢1/2,
lu| < goq1/2, solutions of u and uwmod® ¢, are explicitly given by:

u = ug+ ((u1 — ug)mq mod® q1) Qo

(Uo + (((u1 — ug)my mod® q1) mod® q) . qo) mod™ q.

umod™ q
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3.2 NTT over an integer ring
3.2.1 Explicit formulations for NTTs

In [AB74], the divisibility condition n|0(m) was established for NTTs over arbitrary Z,.
Let [n], = Y20 ¢* be the g-analog® of n so [n], = Y1) 2% € Zy,[z]. To arrive at a
definition more constructively, if n|0(m) then n is invertible in Z,, and we can always
choose a principal n-th root of unity w giving NTT,,.1., as follows

 Zolz)fam = 1) = [ (Zmla] (2 — o))
et | o0 - (a(l).a().... a(w" ) ®)

[Fiir09] along with its inverse NTT,}.  defined as below (where r; = Lin],-ip).

_— { 15 (Znlal o — ) = Znla]fa” ~ 1) W

niliw ((fo, (fl, . 7anA_1) — Z?:_Ol ’I’iéii

A principal* n-th root of unity w is an n-th root of unity satisfying the orthogonality
[n],i =0 for 1 <i < n [Fir09, HVDH21].
Since a(z) mod (z — w') = a(w?), r;r; = §;;7;, and 2?2—01 r; = 1, we see that NTT,,.1.,,

and NTT,,},  are just the polynomial formulation of ¢ and ¢~*.

3.2.2 Multi-moduli NTTs to save memory

There is an often overlooked implementation aspect of multi-moduli NTTs on the ARM
Cortex-M4: Let ¢y and ¢ be coprime moduli for 16-bit NTTs, then we can compute an
NTT over Zgyq, . Due to M4’s powerful 1-cycle long multiplications, a 32-bit NTT over goq1
easily outpaces 2 x 16-bit NTTs. Indeed 16-bit NTT < 32-bit NTT <« 2 x 16-bit NTTs in
cycle counts. We can, thus, reduce stack usage without a huge sacrifice on performance.
For multiplying two size-n polynomials, if the coefficients of the result are smaller than
a product of k 16-bit primes, then we only need 16(k + 1) x n/8 = 2n(k + 1) bytes of
storage as follows. We first note that this memory usage can be achieved with k distinct
16-bit NTTs by interleaving the computation. However, the fact that one 32-bit NTT
being significantly faster than two 16-bit NTTs means we should replace every two 16-bit
NTTs with a 32-bit NTT. If k is odd, then we can process the multiplicands by computing
% 32-bit NTTs and one 16-bit NTT for each. If k is even, for the first multiplicand, we
compute g 32-bit NTTs and transform the last one into the result of two 16-bit NTTs,
while for the second multiplicand, we compute g — 1 32-bit NTTs and two 16-bit NTTs.

3.2.3 Prior uses of multi-moduli

Residue number system (RNS) is used in the context of homomorphic encryption for
computing NTTs over primes pg, p1,...,pr—1 for speed. To use the Explicit CRT a la
[MS90, Theorem 23|, the representation is usually redundant. Here we use only two 16-bit
prime moduli (non-redundantly) for reducing stack usage and jumping between the rings
as shown in Section 4. In [HP21], the authors essentially used RNS to protect linear
computation from side-channel attacks. They lift Z,, to Zy,,,, and compute NTTs over

3 g-analog is frequently used in Combinatorics. In some sense, it is a symbolic generalization of n — we
start by seeing n =1+ 1+ ---+ 1 and replacing each 1 with ¢* in a symbolic fashion. g¢-factorials and
—_—

n
g-binomial coefficients naturally have some combinatorial interpretations.

4 This differs from a primitive n-th root of unity defined as p” = 1, p* # 1, V0 < i < n [Fiir09]. In
some parts of the literature, for example in [vzGG13], a primitive n-th root of unity is defined as the
equivalent condition of our principal n-th root of unity with n invertible. Here we follow the terminology
"primitive" and "principal" from [Fiir09, Section 3].
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Zip,p, for fault protection. Our approach is to switch to Z,,, for speed and to Z,, and
Zp, for saving memory. We will detail when to switch which way later.

3.3 Polynomial multiplication

Let ¢ € Z,,. Polynomial multiplication modulo 2™ — ¢ means computing a(z)b(z) with
the agreement that ™ = 1 so a(z)b(z) mod (z™ — w) is Z;%Ol c;x' where

Ci = (E; 0 @jbi—; ‘H/)Z] z+1a’J i—j+n
If ¢ = 1 then it is called cyclic convolution, and if ¢» = —1 then it is called negacyclic
convolution. In Saber, we are computing negacyclic convolutions with n = 256.

3.4 Discrete weighted transform

We review how to apply the discrete weighted transform (DWT) to negacyclic convolutions,
and in general, polynomial multiplication modulo 2" — (™ for an invertible ¢°. In [CF94],
DWT is given as “introducing a weight signal to compute weighted convolution”. In our
context, the weight signal is the sequence of powers (1, Cyern,y C”fl) of a scalar ¢ [CF94,
Equation (2.13)]. So we will use the notation of NTT subscripted both with ¢ and w for
this DWT.

An implementation of a(x)b(z) in Z,[z] /2™ — (") when n|0(m) and ¢! exists, is
NTTnlqw (NTTp.¢: (@) () nNTTp:ci0 (b)) [CF94, Equation (2.15)] where (-), is n-long point-

wise multiplication and (re-written from [CF94, Equations (2.5) — (2.6)]):

N Zalalfam = = Ty (Zmla] Ko — Cw'))
NTTo:c:e { a(z) = (a(0), a((w) ..., a(Cw™1) (5)
e (B SR

: 1
where 7; = L[n]c-1,-i, with rir; =67 and Y1) r; = 1.

If n = 2F and ¢2° = —1, then (2 is a principal 2°-th root of unity. By setting w = (2,
the negacyclic NTTs of Kyber and Dilithium, Which are exactly the upper halves of

standard NT'Ts, are special cases of NTTy,.¢., and NTT | But notice that our definitions
6

n: C w*
are more generic as in [CF94] because we simply aim to compute negacyclic convolutlons.
Additionally, by setting ( = 1, one can obtain the cyclic versions NTT,,.1.,, and NTTn L

Let o denote the composition so (fog)(z) = f(g(x)), then NTT,.¢., = NTTy.1.0(x = Cy)
where z — (y, termed “twisting” [Ber], transforms (mod 2™ — (™) to (mod y™ — 1) and
has the obvious inverse y + ( ~1x.

3.5 Cooley—Tukey and Gentleman—-Sande FFTs

Two main algorithms to compute radix-2 NTTs are Cooley—Tukey and Gentleman—Sande
FFTs. Cooley-Tukey FFT refers to computing with Cooley—Tukey butterfly (CT butterfly):
for a pair (ag,a1) and a constant ¢, map ((ag,a1),c) to (ap + cai,ap — cay) [CT65].
Gentleman—Sande FFT refers to computing using the Gentleman—Sande butterfly (GS
butterfly): map ((ao, a1),¢) to (ao + a1, (ap — a1)c) [GS66].

Obviously, GS (CT(ao, a1,¢),c¢™ ) = 2(ag,a1) = CT (GS(ag, ar,c),c™*). This observa-
tion suggests that any computation composed of CT and GS butterflies can be inverted
by inverting the CT and GS butterflies and then canceling the scaling by a power of 2.

5 Invertible elements of a finite ring are exactly the roots of unity. Untrue for infinite rings, e.g., 3 € C.
6 There is no fundamental reasons for ¢ to be tied with w. E.g., size-8 NTTs over Zn[:r}/<a:8 + 1>
defined by any (¢,w) € {3,5,6,7,10,11,12,14} x {2, 8,9, 15} fulfills the need for the negacyclic convolution.
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(c) GS for NTT over 2® — 1 and over 2* + 1. (d) GS for iNTT over z® — 1 and over z* + 1.

Figure 1: CT and GS butterflies over 28 — 1 and z* + 1. w,, = w®/™ where w is a principal
8th root of unity.

There are at least two ways of implementing both NTT,,.c.., = NTT,.1., © (x — Cy) and
NTT, ., = (y = ("'x) oNTT, ), described in the previous section.

In this section, we fix n = 2¥ 2F|0(m), and w a principal 2*-th root of unity. We
describe the case where ¢ only needs to be invertible.

3.5.1 CT for NTT and GS for iINTT

Computing NTTgx. ¢, with CT butterflies is mapping
Znlal (2 = ) t0 Z[ol (227 = 1) x Tyl (22 = 27T,
which, when applied recursively, results in the bit-reversal of
Zinlal (o = €) % Zunla) fx = ) X -+ X Zona] (0 — Cw?* 1),

By setting ¢ = 1, we have the most commonly seen CT algorithm for NTTgk..,,.
And by setting CQk = —1 and w = (2, we obtain the CT algorithm for NTTs used in
Kyber [ABD20b] and Dilithium [ABD*20a].

If we invert all the computations with GS butterflies, then we have the GS algorithm
for NTT;}CM. If C‘Qki1 # 41, we can absorb 2¢¥~1 multiplications by 27% at the end of
NTT;1 .,as shown in Figure 1. This approach is widely used in optimized implementations
on Cortex-M4. In particular, NewHope and NewHope-Compact by [ABCG20], Kyber
by [ABCG20, GKS21], Dilithium by [GKS21], and Saber by [CHK*21]. But we can absorb

more multiplications with CT for NTT;}C:W as shown in the next section.

3.5.2 GS for NTT and CT for iNTT

Computing NTTgx. ., with GS butterflies is mapping Z,, [z] /<x2 — §2i> t0 Zim, [x]/<x2 — 1>

whenever ¢ > 0. After mapping Z,, [ac]/<:r2’c - C2k> t0 Z[7] /<;v2k - 1> and then to
zm[x]/<x2“ - 1> X zm[x]/<x2“ . w2’“>,

L, [;10]/<x27€71 - w2k71> is mapped to Z, [(E]/<€E2k72 - 1> immediately. It is clear to see
that the result is also the bit-reversal of

L |z] (= C) X Ly [x] (T — Cw) X -+ X Zm[a:]/<x _ sz’f—1>.
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Now we can invert with CT butterflies to derive the CT algorithm for NTT;;lc:w- If

¢~1 # +1, then we can absorb 2 — 1 multiplications by 2 *as shown in Figure 1. We
implement the CT algorithm for NTT_ L on Cortex-M4.

n:C:w

3.6 NTT for NTT-unfriendly rings

For multiplying polynomials over finite integer rings not amiable for NT'Ts, since the
coefficients of the result are bounded, we can choose a large NTT-friendly modulus to
compute the result as in Z, and then reduce to the target coefficient ring [FSS20, CHK™21].

For Saber, since we are multiplying a matrix by a vector with the polynomial modulus
2?56 + 1, the resulting (signed) coefficients are within +4 - 892 . 256 . | = +12582912.
Therefore, if we choose a modulus ¢’ > 25165824 = 2 - 12582912 satisfying 2n|0(q¢’), we
can compute the multiplication with length-n negacyclic NTTs in Z.

3.7 Incomplete NTT

Let n = ror1, 70|0(m), and w be a principal ro-th root of unity. Incomplete NTT,
written as NTT,.1.,, refers to re-writing ™ as y followed by NTT,,.1., treating y as the
indeterminate. Rewrite the degree-(n — 1) a(x) as a’(y) where a = E;;Bl Ay 4507 . Ex-
plicitly, NTT,.1., maps a(z) to (a/(1),a’(w),...,a’(w™~1)). We can apply the incomplete
NTT for multiplying polynomials. For a(z)b(z) mod (™" — 1), we implement it as
NTTr_Ol:lw (base_mul, ., .., (NTT 1.0 (@(2)), NTTyy 1.0 (b(2)))) where base_mul, ., .o Ineans
ro multiplications of degree-(r; — 1) polynomials, each is over a suitable 2™ — w®.

4 NTTs for MatrixVectorMul

In this section, we describe how we compute NTTs for the MatrixVectorMul in Saber. Our
main contribution is the use of multi-moduli NTTs enabling flexible time-memory trade-offs
that have been not used for implementing Saber. For the unmasked implementation on
Cortex-M4, we show how to mitigate the expansion of memory from 16-bit to 32-bit with
NTTs at a relatively low cost. Our analysis shows that any algorithm not exploiting the
negacyclic property requires the same amount of memory. For the masked implementation
on Cortex-M4, we propose the use of unequal size NTTs for handling the big x big
polynomial multiplications. On Cortex-M3, we propose two approaches. Our 32-bit NTT
approach is applying non-constant-time computation to the public matrix for speed and
constant-time computation whenever the secret data is involved. Our 16-bit NTT approach
is a straight adaptation from the AVX2 implementation in [CHK™21].

We implement all the known speed optimizations in the literature for Cortex-M4
and Cortex-M3. On Cortex-M4, our 32-bit butterfly is from [ACC*21] and our 16-bit
butterfly is from [ABCG20]. We additionally find a slightly faster computation for the
cyclic version used in the iNTT. The faster computation will be added in the eprint version.
On Cortex-M3, our 16-bit and 32-bit butterflies are from [GKS21]. For solving CRT, we
follow the AVX2 implementation in [CHK'21]. We also implement all the known stack
optimizations, including just-in-time generation of the public matrix and small storage for
secret, from [MKV20].

In Table 2, we give a summary of the implemented NTTs. On Cortex-M4, we implement
incomplete NTT/iNTT with 6 layers of CT butterflies for all implementations. On Cortex-
M3, we implement both a 32-bit approach and a 16-bit approach to find the optimal one.
For the 32-bit approach, we implement complete NTT with 8 layers of CT butterflies and
complete iINTT with 8 layers of GS butterflies. For the 16-bit approach, we implement
incomplete NTT/iNTT with 6 layers of CT butterflies.
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Table 2: Summary of NTT approaches.

M3 M4
Unmasked Unmasked Masked

32-bit 16-bit 32-bit 16-bit 32-bit + 16-bit
Opt speed speed/stack | speed/stack stack speed/stack
Modulus 25171457 3329,7681 | 3329 x 7681 | 3329,7681 | 44683393, 769
NTT 8-layer-CT | 6-layer-CT 6-layer-CT
base_mul 1x1 4 x4 4x4
NTT! 8-layer-GS | 6-layer-CT 6-layer-CT

This section is organized as follows: First, we analyze strategies for reducing stack
usage of MatrixVectorMul in Section 4.1. Next, we go through our implementations on
Cortex-M4 in Section 4.2: our stack-optimized implementation for unmasked Saber in
Section 4.2.1, and speed-optimized and stack-optimized implementations for masked Saber
in Section 4.2.2. Finally, we present our implementation on Cortex-M3 in Section 4.3,
covering 32-bit NTT in Section 4.3.1, and 16-bit NTT in Section 4.3.2.

4.1 Reducing stack usage for MatrixVectorMul

The state-of-the-art Saber implementations [CHK™21] using NTTs have thus far not been
thoroughly optimized for minimal stack consumption. The authors exclusively optimized
for speed and do not report any stack usage. Later, Van Beirendonck and Hwang refactored
the implementation to reduce stack usage without degrading speed.” In this section, we
give a more thorough analysis of time-memory trade-offs.

The most memory-consuming operation in Saber is the MatrixVectorMul A”s in key
generation and As’ in encryption. In all implementations, we employ on-the-fly generation
of A, and consequently, only need one polynomial of A in memory. For computing AT's
in key generation, we can compute the NTT for s on-the-fly but accumulate the entire
result in the NTT domain with [ accumulators. This is because the first component of the
result only depends on the first column of A and the first component of s. For computing
As’ during encryption, we compute the entire NTT of s with [ polynomial buffers but
hold only one buffer for accumulation. This is because a component of the result is an
inner product of a row of A and s, and is computed in order. In summary, for computing
AT's, the most memory-consuming part is the accumulation in the NTT domain. And for
computing As’, the most memory-consuming part is transforming s’ into the NTT domain.
In the most speed-optimized and the most stack-optimized implementations, there is no
downside to this. But they result in different time-memory trade-offs as shown below.

We now show that there are four ways for computing the product, which we will name
strategies A, B, C, and D. They are distinguished by caching the NTTs of s or not and
accumulating in the NTT domain or not.

A. We cache NTT(s) and accumulate values in the NTT domain;
B. we cache NTT(s) and accumulate values in the normal domain;

C. we re-compute NTT(s) and accumulate values in the NTT domain;
D. we re-compute NTT(s) and accumulate values in the normal domain.

All four strategies apply to ATs and As’. A is the fastest, and D consumes the least
amount of memory. B and C run in comparable cycles but result in different degrees of
trade-off for memory. For reducing the memory usage of A”'s, B is much better than C

"https://github.com/mupq/pqm4/pull/181
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Figure 2: Split of polynomial rings with CRT for incomplete NTT implementation for Saber.
Blue arrows are isomorphisms via NTT. If ¢/ = pop1, the red arrows are isomorphisms via
CRT with wgr.1908 = CRT(wp0:1287wp1:128)'

since B effectively reduces the size of accumulators. On the other hand, for reducing the
memory usage of As’, C is much better than B, since C avoids caching the entire NTT(s').

On Cortex-M4, A corresponds to the implementation in [CHK'21]; we additionally
implement D for unmasked Saber, and A, C, and D for masked Saber. On Cortex-M3, we
implement A for 32-bit NTT and strategies A, C, and D for 16-bit NTT.

4.2 Implementation on M4

For the simplicity of discussions, throughout this section, we assume w is a principal
128-th root of unity so 2296 + 1 = 22°6 — w54 We illustrate our strategies only for
MatrixVectorMul As’ in encryption. However, the ideas apply analogously for ATs in
key generation. For the concrete evaluation of the stack usage, we use [ to refer to the
matrix dimension (I = 2 for LightSaber, [ = 3 for Saber, and [ = 4 for FireSaber). For
our masked implementation, we refer to SABER_SHARES as the number of shares. Since
our masked NTT multiplication is a generic multiplier for Saber, our code works for any
masking order. However, the other parts of masked Saber from [VBDK™20] only support
first-order masking, and, hence, SABER_SHARES is always 2 in our experiments.

We exclusively use the Cooley—Tukey FFT to implement both the NTT and iNTT on
the Cortex-M4. We recall the corresponding butterfly operations for 16-bit NTTs and
32-bit NTTs known from the literature [ABCG20, ACC*21] in the following.

32-bit CT butterflies. A straightforward implementation of 32-bit CT butterflies is
using smull and smlal both giving 64-bit immediate results for a - (bR mod *Q) and
multiplication by Q with accumulation. A 32-bit CT butterfly is to proceed with add-
sub of (ag,ba;) [ACCT21]. Although the 32-bit butterfly from [GKS21] gives the same
functionality, we implement the 32-bit butterfly from [ACC*21] for a smaller code size.

16-bit CT butterflies. We implement CT butterflies with s{mul, mla}{b,t}{b,t}. Fur-
thermore, we can use sadd16 and ssubl16 to do add-sub pairs in parallel [ABCG20].

4.2.1 New record on stack usage for unmasked Saber

For Saber, all polynomial multiplications are of the form of big x small, i.e., we compute
a(z)b(z) in Zg[x] (z*° + 1) where a(x) € Zg[z](x**° + 1) and b(z) € Z,[z] (2¢ +1).

Previous work [CHK™"21] has shown that this can be efficiently computed using NTTs by

switching to an NTT-friendly prime ¢" > 2- 4 - £ .1 which suffices for acquiring the result

in Z. The authors chose the prime 25166081. However, we instead use ¢’ = 7681 - 3329 =
25570049 > 25165824 for applying NTTs with advantages in terms of stack usage.
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NTT with composite modulus. Let pg and p; be distinct primes with 128 dividing both
0(po) and O(p1), wpy:128 and wp,.128 be principal 128-th roots of unity in Z,, and Z,,,
respectively. By CRT and incomplete NTTs, we have the following isomorphisms:

[
* Zpopl = ZPO X Zm

63 .
° NTT(PO) = NTT64:UJPO?128:"‘)1220:128 givjng ZPO [I]/<‘r256 + 1> = il;IOZPO [l’]/<£l?4 - w127:)+1128>

12

GH?’ 7, 4 241
P21 [m]/(m p1:128>

giving

® NTT(p,) = NTTgu0s,,,1o52 giving Zy, [z] (2?56 4+ 1)

1:128

Together, we have NTT(;,,) = NTT64:00,, 1280

2
pop1:128

63
256 ~ 4 2i+1
Zpopl [1’]/<£C + 1> = il;IOZpom [x]/(m - wpé;1:128>’
Figure 2 is an illustration of the isomorphisms.
Instead of implementing a(z)b(z) in Zy,, [] (z**° + 1) as applying NTT(_ptpl) on the
base_muley.q., , 108 of

(NTT(Popl) (a(w)) ’ NTT(popl) (b(m))) ,

for saving memory, we apply NTT(;tpl) on the CRT of

base_mulgssn, o (NTT(popy)(@(x)) mod po, NTT () (b(2)))
base_mulgyg, 1 (NTT(popy)(@(2)) mod py, NTT () (b(2)))

The workflow is outlined in Algorithm 4. We declare 16-bit arrays in the order of
buffil_16,buff2_16,buff3_16 and 32-bit pointers *buffi_32 = (uint32_t*)buffl_16,
*pbuff2_32 = (uint32_t*)buff2_16 so we can access the memory as 32-bit arrays at
some point. First, we compute NTT(,,,,)(a(z)) and store the result to the 32-bit array
buff1l_32. We then compute and put buff1_32 mod p; in the 16-bit array buff3_16. For
computing buff1_32 mod py, we see that the result in buffi_32 won’t be needed after
reducing modpg, so we compute and put buff1_32 mod pg in the 16-bit array buffi_16.
This is doable if we compute modpy from the beginning. We proceed with computing
NTT(;,)(b(2)) in the 16-bit array buff2_16 followed by base_mulgy.y.,, ,,, Outputting
to buff3_16, and computing NTT(,,)(b(z)) in the 16-bit array buff2_16 followed by
base_mulgy.y., .., OUtPUtting to buff2_16. Next we compute the explicit CRT, giving
32-bit coefficients as in the NTT domain with coefficient ring Zy,p,, and put the result in
the 32-bit array buff1_32. Finally, we compute NTT(;tpl) and reduce the coefficient ring
to Zg.

Memory layout. For implementing stack optimized MatrixVectorMul in encapsulation
of unmasked Saber, we employ a variant of Strategy D: we declare arrays

uint16_t buffil_16[256], buff2_16[256], buff3_16[256], acc_16[256]
multiply an element of A by an element of s’ with the above strategy, accumulate the
result to acc_16, and finally derive an element of &'. In total, only 1536 bytes are needed
if the accumulator is excluded.

Comparison with previous stack optimized implementation. We compare the memory
usage of polynomial multiplication to the currently most stack optimized implementation
— 4 levels of memory efficient Karatsuba [MKV20]. Ignoring the extra O(logn) memory
overhead for Karatsuba, we focus on the buffers for the multiplicands and the result. For



140 Multi-moduli NT'Ts for Saber on Cortex-M3 and Cortex-M4

Algorithm 4 16-bit (big, small) polynomial multiplication(s) using 1536 bytes of memory.
Declare arrays uint16_t buffl_16[256], buff2_16[256], buff3_16[256]
wint32_t *buffi 32 = (uint32_t*)buffl 16

uint32_t *buff2_32 = (uint32_t*)buffl_16
buffi_32[0-265] = NTT,,p,)(src1[0-255])

buff3_16[0-255] = buffl_32[0-255] mod p;

buffl_16[0-255] = buffl_32[0-255] mod po

buff2_16[0-265] = NTT(,,)(src2[0-255])

buff3_16[0-255] = base_mu164:4:wm 128 (buff3_16[0-255],buff2_16[0-255])
buff2_16[0-265] = NTT(,)(src2[0-255])

buff2_16[0-255] = base_mulgy.y,, ,,, (buffl_16[0-255], buff2_16[0-255])
buffl_32[0-255] = CRT(buff2_16 [0-255], buff3_16[0-255])

des[0-255] = NTT . (buff1_32[0-255]) mod ¢

Declare pointers {

the Karatsuba approach, one needs 512 bytes for the accumulator, 512 bytes for holding a
component of A, and 1022 bytes for the degree-510 result — almost the same as the NTT
approach with composite modulus. Essentially, any algorithm not exploiting the negacyclic
property requires such amount of memory. We only find the work by [PC20] giving a
non-NTT-based approach exploiting the negacyclic property, but the authors reported
that they were not able to achieve a smaller footprint than the Karatsuba by [MKV20].

4.2.2 Masked MatrixVectorMul for Saber

A masked implementation of Saber decapsulation using Toom—Cook multiplication is given
in [VBDK"20]. We improve this implementation by replacing MatrixVectorMul and
InnerProd with NTT-based multiplications. As secret polynomials s and s’ are masked
arithmetically modulo ¢, the multiplications are no longer big x small, but rather big
x big, i.e., all input polynomials are in Zg[2]/(2%°¢ 4 1). Therefore, the coefficients of
the product can be larger than 32-bit. This implies switching to an NTT-friendly 25-bit
modulus and performing 32-bit NTTs no longer produces correct results.

Instead, we propose combining a 32-bit NTT with a 16-bit NTT to compute the 48-bit
value and then reduce each coefficient to Z,. We compute 32-bit NTT and 16-bit NTT by
choosing py = 44683393 = 349089 - 128 + 1 and p; = 769 = 6 - 128 + 1 as moduli. Their
product ¢’ = pop1 = 44683393 - 769 = 34361529217 > 34359738368 = 2 - (%)2 - 256 - 4 shows
that after applying CRT, we derive the result as in Z.

For computing a(z)b(z) in Zg[z] (22 + 1), we compute a(z)b(x) in Zp, [z] 2?56 + 1)
with 32-bit NTT and in Z,, [#] {22 + 1) with 16-bit NTT. Then, we apply CRT to obtain
the result in Zg [2] {2?5¢ 4 1) which coincides with the result in Z[z]{25® 4 1). Finally,
we reduce the coefficient ring to Z,.

First, we show how to multiply polynomials a(x) and b(z) within 3072 bytes. The
idea is simple: we compute the 32-bit NTT(, ) of a(x), store the result in a 32-bit array,
compute the 16-bit NTT(,,) of a(x), and store the result in a 16-bit array. For b(x), we
declare a 32-bit array and a 16-bit array, and compute 32-bit NTT(,,) and 16-bit NTT(, )
as for a(z). Then, we perform in-place 32-bit base_mulgy.q.q, .10 followed by in-place

32-bit NTT(_pi), and in-place 16-bit base_muley.q., .5 followed by in-place 16-bit NTT(_pll).
Finally, we apply CRT followed by reduction to Z,.

Memory layout for speed-optimized implementations. For implementing speed opti-
mized MatrixVectorMul, we employ a shared variant of Strategy A, and declare arrays
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uint32_t s_NTT_32[SABER_SHARES] [/] [256]

uint16_t s_NTT_16[SABER_SHARES] [I] [256]

uint32_t buff_32[256], acc_32[SABER_SHARES] [256]

uint16_t buff_ 16[256], acc_16[SABER_SHARES] [256]
For each share of s, we compute the 32-bit NTTs and 16-bit NT'Ts of it and store them
in s_NTT_{32, 16}. For computing an element of shared 0/, we repeat the following [
times: compute the 32-bit NTT and 16-bit NTT of an element of A; multiply them by the
corresponding element of each share of s’ using base_mulgyy.q, .1 and base_mulgyy.g, .1
accumulate the results to accumulators acc_{32, 163}; compute the 32-bit iNTT and
16-bit iNTT for each share; and finally, solve CRT and reduce to Z, for each share.

Memory layout for stack optimized implementations. For implementing stack optimized
MatrixVectorMul, we employ a shared variant of Strategy D, and declare arrays
uint32_t s_NTT_32[256], buff_32[256]
{ uint16_t s_NTT_16[256], buff_16[256], acc_16[SABER_SHARES] [256]

We repeat [ times computing the shares of an element of . For computing the shares of a
polynomial product, we repeat [ times for the following. We first expand an element of A
and store it in buff_16. Then we compute the 32-bit NTT and in-place 16-bit NTT for
the element and the result is stored in buff_{32, 16}. Next, we repeat SABER_SHARES
times clearing the arrays s_NTT_{32, 16}, computing 32-bit NTT and 16-bit NTT of a
share of s’ and storing them in s_NTT_{32, 16}, computing in-place base_mulgyy., s
and base_muley.s., ;o8 in-place 32-bit iNTT and 16-bit iNTT, solving with CRT, and
finally, accumulating the result to the corresponding share of acc_16. In total, 3072 bytes
are needed if accumulators are excluded.

Algorithm 5 16-bit (big, big) polynomial multiplication(s) using 3 074 bytes of memory.

uint32_t buffl_32[256], buff2_32[256]

uint16_t buffl_16[256], buff2_16[256]

. { buff1_32[0-255] = NTT,,(src1[0-255])
buffl_16[0-265] = NTT(,,)(src1[0-2565])

_ { buff2_32[0-255] = NTT,,(src2[0-255])
buff2_16[0-265] = NTT(,,)(src2[0-2565])

. { buffl 32[0-255] = base_mulgy..,,, .. (buffl_32[0-255], buff2_32[0-255])
buffl 16[0-265] = base_mulgy..,, .. (buffl_16[0-255], buff2_16[0-255])

buffi 32[0-255] = NTT_! (buffi 32[0-255])

buffi 16[0-255] = NTT ! (buffi_16[0-255])

5: des[0-255] = CRT(buff1_32[0-265],buffi_16[0-255]) mod ¢

Declare arrays {

Comparison with masked Toom—Cook. We first compare the stack usage. In [VBDK™20],
the polynomial multiplication is implemented as a Toom-4 followed by 2 levels of Karatsuba.
Therefore, the memory usage for entire evaluation of one polynomial is 2-256- I (%)2 = 1568
bytes. With carefully optimized accumulation, 3076 bytes are used. In total, 3588 bytes
are needed because of the additional buffer of an element of A. For our stack optimized
implementation, we only need 3072 bytes. Next we compare the number of NTTs computed
in the speed optimized implementation. We compute 9 32-bit NTTs and 9 16-bit NTTs
for A, 6 32-bit NTTs and 6 16-bit NT'Ts for the shared secret, 6 32-bit iNTTs and 6 16-bit
iNTTs for the shared results. In summary, we need 15 32-bit NTTs, 15 16-bit NTTs, 6
32-bit iNTTs, and 6 16-bit iNTTs. Given that one 16-bit NTT takes 0.79x of one 32-bit
NTT and one 16-bit iNTT takes 0.82x of one 32-bit iNTT, then essentially we need the
equivalent of 26.85 32-bit NTTs and 10.92 32-bit iNTTs. Compared to [CHK™21], we only
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need about 2.24x 32-bit NTTs and 3.64x 32-bit iNTTs, which is obviously faster than the
shared variant of Toom—Cook.

4.3 Implementation on M3

Due to the more limited instruction set and the early terminating long multiplications on
the Cortex-M3, the 32-bit butterflies from the previous section can only be used with some
restrictions. In general, there are two approaches to still benefit from NTTs on the Cortex-
M3: One can either implement 32-bit NTTs, but avoid the early terminating multiplication
instructions for secret inputs, or one exclusively uses 16-bit NTTs and computes the CRT
of the results. The former approach resembles the Cortex-M4 approach from [CHK™21]
and the previous section, while the latter is similar to the AVX2 implementation from
[CHK21]. We implement both approaches and compare their performance.

We start by describing the butterfly implementations. For the 32-bit approach, we use
CT for the NTT and GS for the iNTT, while for the 16-bit approach we use CT for both.

32-bit CT butterflies. The 32-bit CT butterflies with smull and smlal are functionally
correct on Cortex-M3. However, these instructions are early-terminating and can only
be used when computing on public data. We denote the 5-instruction 32-bit butterflies
as NTT_leak on Cortex-M3. For computing the NTT of the secret values s and s’ on
Cortex-M3, we implement smull_const and smlal_const with radix-2'6 schoolbook
multiplication as suggested in [GKS21].

32-bit GS butterflies. As implemented for CT butterflies, we also use smull_const and
smlal_const for 32-bit GS butterflies. After loading the coefficients as 32-bit values for
the add-sub, we then split the result of ag — a1 into halves for Montgomery multiplication.

16-bit CT butterflies. A straightforward implementation of 16-bit CT butterflies is using
mul and mla with sxth for extracting the lower 16 bits [GKS21].

4.3.1 32-bit NTT for MatrixVectorMul

We implement strategy A for MatrixVectorMul using 32-bit NTTs on Cortex-M3. An
important observation is that A is public, so we can employ NTT_leak on A. This greatly
improves the performance since among the 2 +2] NTTs/iNTTs, /2 of them are computation
for A. On the other hand, the NTTs of secret and base_mul can only be computed with
smull_const and smlal_const. We use the constant-time 32-bit CT and GS butterflies
for the NTT and iNTT on secret data, respectively. Using smull_const and smlal_const
leads to a much higher register pressure during the entire multiplication. Due to that,
we do not benefit from using incomplete NTTs as the 2 x 2 base multiplication already
exhausts the available registers. Therefore, we compute complete NTTs.

4.3.2 16-bit NTTs for MatrixVectorMul

We implement strategies A, C, and D with the 16-bit NTT approach for MatrixVectorMul
on Cortex-M3. Our results show that the 16-bit approach is faster than the 32-bit approach.
For strategy A, this corresponds to the AVX2 implementation from [CHK'21]. We also
carry out the stack optimization on Cortex-M4 and implement strategies C and D.

4.3.3 A Note on combining 32-bit and 16-bit

There is an interesting observation when comparing the cycles of MatrixVectorMul: One
8-layer NTT_leak is only about 1.15x of two 6-layer 16-bit NTTs. This implies that 6-layer



Abdulrahman, Chen, Chen, Hwang, Kannwischer, Yang 143

NTT_leak might be a faster approach. One can first compute A with 6-layer NTT_leak, and
then transform the result into two 16-bit NTTs with ¢ — (¢ mod pg, ¢ mod p;). However,
our experiments show that the performance gain with NTT_leak is canceled out by ¢ —
(i mod pg, i mod py). Therefore, we did not use this trick in our implementation.

5 Result

This section presents our results on the Cortex-M3 and Cortex-M4. We first describe
our target platforms and setup and then present the results in Section 5.1. Section 5.2
evaluates the side-channel resistance of our masked implementation.

Cortex-M4 setup. We target the STM32F407-DISOVERY board featuring a STM32F407VG
Cortex-M4 microcontroller with 196 kB of SRAM and 1 MB of flash. Our benchmarking
setup is based on pqm4 [KRSS]; we clock the core at 24 MHz with no flash wait states.

Cortex-M3 setup. Our Cortex-M3 target platform is the Nucleo-F207ZG board contain-
ing a STM32F207ZG core with 128 kB of SRAM and 1 MB of flash. Our benchmarking
setup is based on pqm3.® We clock the core at 30 MHz to avoid having flash wait states.

Keccak and Randomness. For both implementations, we use the ARMv7-M assembly

implementation of Keccak from the XKCP? which is operational on the Cortex-M3 and

the Cortex-M4. This implementation is also contained in both pgqm3 and pqm4. For

randomness required in key generation and encapsulation, we use the hardware RNG.
All code is compiled with arm-none-eabi-gcc Version 10.2.0 with -03.

5.1 Performance

Table 3: Cycle counts for NTT, base_mul, NTT~! on the Cortex-M3 and the Cortex-M4.
For each of the first three columns, the cycles for a polynomial multiplication will be
2 - NTT(or NTT + NTT_leak) + NTT ! + base_mul + CRT(if not —). The NTT of the column
32-bit 4 16-bit contains a layer of sbfx to reduce elements to Z,. For the last two columns,
they together implement a polynomial multiplication, and the cycles are the sum of the
two columns. One of the 16-bit base_mul is preceded with modular reduction to save load
and store instructions. For the stack usage, the first three columns are for a polynomial
multiplication. The stack usage of the last two columns are the bytes occupied by the
functions. But the actual stack usage is 1536 bytes, since the arrays are overlapped.

M3 M4

2 x 16-bit | 32-bit | 32-bit + 16-bit | 32-bit | 16-bit + 16-bit
NTT 16774 | 31056 6116 + 4852 | 5853 4374+ 4822
NTT_leak — | 19363 - - -
NTT! 19079 | 37394 5872 + 4817 7137 —
base_mul 11933 | 8532 4186 + 2966 - 3731 4+ 2965
modp; - - - - 0+ 1171
CRT 4642 - 4503 - 2435
poly_mul 69202 | 96345 44 280 32488
Bytes(speed opt) 2048 | 2048 3072 - -
Bytes(stack opt) 1536 - 2048 | 1536 1024

8https://github. com/mupq/pqm3
9https://github.com/XKCP/XKCP
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We report results for a single polynomial multiplication in Table 3. Each of the first three
columns realizes a polynomial multiplication as computing NTTs on inputs, base_mul, and
finally NTT~!(followed by CRT if needed). For the last two columns, they together realize
a polynomial multiplication as computing one 32-bit NTT, two 16-bit NTTs, two 16-bit
base_muls, one CRT giving a 32-bit polynomial, and finally one 32-bit NTT!.

We report results of our implementations of unmasked Saber as shown in Table 4. For
the ARM Cortex-M3, our speed-optimized NTT implementation of (unmasked) Saber
requires only 65.0%-70.7% of the time and 45.0%-51.2% of stack space compares to the
Toom—Cook implementation available in pqm3. Our stack-optimized implementation is still
5.6%-13.0% faster while requiring 70.3%-79.9% less stack space. For the Cortex-M4, our
stack-optimized implementation requires about the same or slightly less amount of stack
while achieving a vast speed-up compared to the stack-optimized Saber from [MKV20].

Table 4: Speed and stack results for unprotected Saber on Cortex-M3 and Cortex-M4. Key
generation, encapsulation, and decapsulation are denoted as K, E, and D, respectively. The
stack usage of [CHK™'21] is obtained from https://github.com/mupq/pqmé/pull/167.

LightSaber Saber FireSaber
cc  stack cc  stack cc  stack
pqm3 K 710k 9652 1328k 13252 | 2171k 20116
Toom E 967k 11372 1738k 15516 | 2688k 22964
(speed) D | 1081k 12116 1902k 16612 | 2933k 24444
This work | K | 540k 5756 939k 6788 | 1439k 7812
16-bit E | 715k 6436 | 1194k 7468 | 1751k 8492
M3 (speed, A) | D | 749k 6436 | 1237k 7468 | 1811k 8492
This work | K 632k 3420 1253k 3932 1955k 4444
16-bit E 887k 3204 | 1614k 3332 | 2427k 3460
(stack, D) | D 923k 3204 | 1657k 3332 | 2487k 3460
This work | K 594k 5732 1057k 6756 1553k 7788
32-bit E 800k 6412 1330k 7444 1883k 8468
(speed, A) | D 877k 6420 1429k 7452 | 2016k 8476
K 612k 3564 | 1230k 4348 | 2046k 5116
[MKV20] E 880k 3148 1616k 3412 | 2538k 3668
(stack) D 976k 3164 | 1759k 3420 | 2740k 3684
K 360k 14604 658k 23284 1008k 37116
[CHKT21] | E 513k 16252 864k 32620 1255k 40484
M4 (speed) D 498k 16996 835k 33824 1227k 41964
This work | K | 353k 5764 644k 6788 990k 7812
32-bit E | 487k 6444 826k 7468 | 1208k 8484
(speed, A) | D | 456k 6440 777k 7484 | 1152k 8500
This work | K 423k 3428 819k 3940 1315k 4452
hybrid E 597k 3204 | 1063k 3332 1617k 3468
(stack, D) | D 583k 3220 1039k 3348 1594k 3484

The results of masked decapsulation of Saber are shown in Table 5. We also report
the overhead of cycles and stack usage in Table 6. Our speed-optimized approach is
outperforming Toom—Cook by 15.4%. Our stack-optimized approach is using 72.3% of the
stack of Toom—Cook, and is only a little slower than Toom—Cook. In trading speed for
memory, we implement strategy C, outperforming Toom—Cook in both speed and memory.
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Table 5: Masked Saber on the Cortex- Table 6: Masking cycles/stack overhead.

M4. unmasked A | unmasked D

Decapsulation cc stack cc stack

cc stack  masked A | 3.07 2.16 | 2.30 4.82

[VBDK™20] 2833k 11656 masked C | 3.37 140 | 2.52 3.13

This work (speed, A) | 2385k 16140 masked D | 3.66 1.13 | 2.74 2.52
This work (C) 2615k 10476
This work (stack, D) | 2846k 8432

Notes on joint implementation with Kyber NTT optimized with stack and program size.
Due to the flexibility of choosing moduli, one can share the 16-bit NTT implementations
between Kyber and Saber. But we do not recommend this. For joint implementation in
software, neither Kyber nor Saber will be optimal for the following reasons: (1) The Kyber
NTT is 7 layers, while the optimal NTT for Saber is 6 layers; (2) Saber requires two 16-bit
primes where their product must be larger than 25165824. The smallest suitable prime are
3329 and 7681. The first reason implies MatrixVectorMul for Saber is suboptimal, and the
second reason implies more reductions are required for NTT of Kyber since 7681 > 3329.

5.2 Leakage Evaluation of Masked MatrixVectorMul in Saber

We adopt the Test Vector Leakage Assessment (TVLA) methodology to perform leakage
detection. We made use of CW1173 ChipWhisperer-Lite [Newb] to collect the power
consumption traces at a sampling rate of 59.04 MS/s. The target board is CW308 UFO
[Newc] with ChipWhisperer platform - CW308_STM32F4 (ST Micro STM32F405) [Newa]
on which we run our implementations at the frequency of 7.38 MHz. We focus on the key
decapsulation and capture three sets of power traces corresponding to the test vectors
in Table 7 [ISO16]. Then, compute Welch’s t-test to identify the differentiating features
between Set 1 and Set 2, and between Set 1 and Set 3.

Table 7: Test Vectors of Saber for captured power traces

Set Number Test vector properties
Set 1 Fixed secret key, Fixed ciphertext
Set 2 Fixed secret key, Randomly-chosen ciphertexts
Set 3 Randomly-chosen secret keys, Fixed ciphertext

The maximum number of samples on the CW1173 ChipWhisperer-Lite is 24573 [Newb].
Thus, we cannot capture the whole power trace of a full Saber decapsulation. In our
experiment we only capture traces of the power consumption toward the beginning of
the key decapsulation, which is an inner product of polynomial multiplications between
ciphertext and the secret key, which is implemented using the NTT. There are four steps:
NTT of the ciphertext, NTT of the secret key, base multiplication, and the iNTT.

In the first experiment, we do the TVLA on the power traces of Set 1 and Set 2, which
correspond to the randomly-chosen ciphertexts and fixed-chosen ciphertexts with a fixed
secret key. In the second step, doing the NTT of the secret key, there is no leakage, which
is expected since the secret key is fixed in our first experiment. The first and the third
steps, doing the NTT of ciphertext and base multiplications between the NTT results of
ciphertext and the secret key, show leakage, which is expected since the ciphertext is public
information. After the base multiplication, finally, the inverse NTT shows no leakage in
the protected version. By contrast, there is leakage in the unprotected version. Figure 3a
and Figure 3b show the t-tests of unprotected Saber and masked Saber on power traces
of Set 1 and Set 2. Each figure can be separated into two parts by the black lines: 1.
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doing base multiplication between the NTT of ciphertext and the NTT of the secret key;
2. doing the inverse NTT. We can see that the t-statistic value of the masked Saber is
inside the +4.5 [WO19] interval (red line) for all the points in time during the NTT ™,
which implies that the protected implementation is secure against first-order attacks.

In addition, the t-statistic value of the first part in Figure 3b is outside the +4.5
interval, since one of the multiplicands of base multiplication, ciphertext, is a public value.

In the second experiment, we do the TVLA on the power traces of Set 1 and Set 3,
which correspond to the randomly-chosen secret keys and fixed-chosen secret keys with a
fixed ciphertext. In the second step, doing the NTT of the secret key shows no leakage in
the protected version. By contrast, there is leakage in the unprotected version. Figure 4a
and Figure 4b show the t-tests of unprotected Saber and masked Saber on power traces
of Set 1 and Set 3. Each figure can be separated into two parts by the black lines: 1.
doing the NTT of ciphertext; 2. doing the NTT of the secret key. We can see that the
t-statistic value of the masked Saber is inside the £4.5 [WO19] interval, the red lines in
the figures, for all the points in time during the NTT, which implies that the protected
implementation is secure against first-order attacks.

Our masked Saber implementation as described in Section 4.2.2 only differs from
[VBDK™20] in MatrixVectorMul and InnerProd. Hence, the masked Keccak implemen-
tation remains unchanged. To verify that this implementation is indeed secure, we perform
another set of experiments targeting the beginning of the SHA3-512 function, which is the
absorb step in the Keccak sponge construction. Then, we do the TVLA on the power traces
of Set 1 and Set 2, which correspond to the randomly-chosen ciphertexts and fixed-chosen
ciphertexts with a fixed secret key. In masked Saber, turning the masks on or off can
activate or deactivate the countermeasure. Figure 5a and Figure 5b show the t-tests of
Keccak implementation in masked Saber on power traces of Set 1 and Set 2 with masks
off and with masks on, respectively. We can see that the t-statistic value of the masked
Saber with masks on is inside the 4.5 [WO19] interval (the red lines in the figures) for all
the points. It means that the masked Saber implementation is secure against first-order
attacks when the masks are on. 19
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