
Hydra: An energy-efficient programmable
cryptographic coprocessor supporting elliptic-curve

pairings over fields of large characteristics

Yun-An Chang1, Wei-Chih Hong2, Ming-Chun Hsiao3, Bo-Yin Yang4, An-Yeu Wu5,
and Chen-Mou Cheng6

1 National Taiwan University, Taipei, 10617, Taiwan
ghfjdksl@gmail.com

2 Academia Sinica, Taipei, 11529, Taiwan
wchong@iis.sinica.edu.tw

3 National Taiwan University, Taipei, 10617, Taiwan
mingchun@access.ee.ntu.edu.tw
4 Academia Sinica, Taipei, 11529, Taiwan

by@crypto.tw
5 National Taiwan University, Taipei, 10617, Taiwan

andywu@ntu.edu.tw
6 National Taiwan University, Taipei, 10617, Taiwan

ccheng@cc.ee.ntu.edu.tw

Abstract. Bilinear pairings on elliptic curves have many applications in cryp-
tography and cryptanalysis. Pairing computation is more complicated compared
to that of other popular public-key cryptosystems. Efficient implementation of
cryptographic pairing, both software- and hardware-based approaches, has thus
received increasing interest. In this paper, we focus on hardware implementation
and present the design of Hydra, an energy-efficient programmable cryptographic
coprocessor that supports various pairings over fields of large characteristics. We
also present several implementations of Hydra, among which the smallest only
uses 116 K gates when synthesized in TSMC 90 nm standard cell library. Despite
the extra programmability, our design is competitive compared even with spe-
cialized implementations in terms of time-area-cycle product, a common figure
of merit that provides a good measure of energy efficiency. For example, it only
takes 3.04 ms to compute an optimal ate pairing over Barreto-Naehrig curves
when the chip operates at 200 MHz. This is certainly a very small time-area-
cycle product among all hardware implementations of cryptographic pairing in
the current literature.

1 Introduction

Bilinear pairings on elliptic curves were introduced in the middle of 1990’s for crypt-
analytic purposes, e.g., to break cryptographic protocols whose security is based on the
hardness of the elliptic-curve discrete-logarithm problem [?,?]. In 2000, Joux showed
that they can also be used for tripartite key agreement [?]. Since then, many constructive
pairing-based schemes were proposed, such as identity-based encryption [?], identity-
based signatures [?], as well as short signatures [?].



Pairing computation is much more complicated compared to that of other popular
public-key cryptosystems. Efficient implementation of cryptographic pairing has thus
received increasing interest, both software- and hardware-based approaches, pursuing
higher speed or, in the cases of hardware implementation, smaller time-area-cycle prod-
uct (ATC product), a common figure of merit that provides a good measure of energy
efficiency.

For example, Kammler et al. reported a hardware implementation of a cryptographic
coprocessor for various pairings of 128-bit security [?]. Although this is not the first pro-
grammable architecture, it is the first one that supports 128-bit security level. Fan, Ver-
cauteren, and Verbauwhede improved the multiplication algorithm for Barreto-Naehrig
(BN) curves with special parameters to achieve a higher speed [?]. However, as they
took advantage of the chosen parameters, the result is only applicable to BN curves.

For field-programmable gate arrays (FPGAs), Ghosh, Mukhopadhyay, and Roy-
chowdhury exploited the special arithmetic units in some FPGAs and gave the first
FPGA pairing implementation with 128-bit security level [?]. In their proposed archi-
tecture, multiple homogeneous arithmetic units are used in parallel to exploit the in-
herent parallelism in pairing computation. Recently, Cheung et al. experimented with
Montgomery multiplication in residue number systems [?], and Ghosh, Roychowdhury,
and Das explored ηT pairing over binary curves [?]. Both implementations achieved
good results with respect to speed.

In this paper, we will present the design and implementation of Hydra, an energy-
efficient programmable cryptographic coprocessor that supports various pairings at 128-
bit security level. Unlike the general architecture of, e.g., Kammler et al. [?], our design
is optimized for carrying out pairing computation over fields of large characteristics. As
a result, our design stays competitive in terms of ATC product even compared with spe-
cialized implementations such as that of Fan, Vercauteren, and Verbauwhede [?]. For
example, our smallest implementation of Hydra only uses 116 K gates when synthe-
sized in TSMC 90 nm standard cell library and has a latency of 3.04 ms when running
at 200 MHz. This is certainly a very small time-area-cycle product among all hardware
implementations of cryptographic pairing in the current literature.

The organization of the rest of this paper is as follows. In Section ??, we will first
give a brief introduction to cryptographic pairings for the subsequent exposition. We
will present the main ideas behind Hydra’s architectural design in Section ??. We will
then go through the detailed design of datapath in Section ?? and control in Section ??.
To conclude, we will compare our implementation results with the state of the arts in
Section ??.

2 Background

2.1 Bilinear pairings

Let G1, G2, and GT be abelian groups. A bilinear pairing is a map α : G1×G2 → GT

with the following properties.

1. Bilinearity: α(mP,Q) = α(P,mQ) = α(P,Q)m for m ∈ Z.



2. Non-degeneracy: For all nonzeroP ∈ G1, there existsQ ∈ G2 such thatα(P,Q) 6=
1, and vice versa.

3. Computability: α(P,Q) can be efficiently computed.

Most cryptographic pairings work on elliptic curves. There are many choices for the
map α as well as the curves. In this work, we use Barreto-Naehrig (BN) curves [?] and
optimal ate pairing [?] as an example, but other pairings can also be accelerated by our
Hydra coprocessor.

2.2 Barreto-Naehrig curves

Barreto-Naehrig curves are pairing-friendly elliptic curves over prime field Fp with
embedding degree k = 12 [?]. They are defined by the equationE : y2 = x3+b, b 6= 0.
Let n denote the group order of E(Fp). Then p and r can be parameterized as

p(u) = 36x4 − 36x3 + 24x2 − 6x+ 1 and

n(u) = 36x4 − 36x3 + 18x2 − 6x+ 1,

where u ∈ Z is an integer such that p and n are both prime numbers. We follow the
work of Kammler et al. [?] and choose b = 24 and u =0x6000000000001F2D.
This yields a key security parameter p of 256 bits.

2.3 Computing optimal ate pairing

Algorithm ?? shows how to compute an optimal ate pairing. We base our design on

Algorithm 1 Optimal ate pairing over Barreto-Naehrig curves
Require: P ∈ G1, Q ∈ G2, s = 6t+ 2 =

∑L−1
i=0 si2

i, si ∈ {0, 1}
Ensure: αopt(P,Q)
1: T ← Q; f ← 1;
2: for i = L− 2 to 0 do
3: f ← f2 · lT,T (P ); T ← 2T ;
4: if si == 1 then
5: f ← f · lT,Q; T ← T +Q
6: end if
7: end for
8: Q1 ← πp(Q); Q2 ← πp2(Q);
9: f ← f · lT,Q1(P ); T ← T +Q1

10: f ← f · lT,−Q2(P ); T ← T −Q2

11: f ← f
(p12−1)

r ;
12: return f

Schwabe’s high-quality software implementation [?] with further optimization on reg-
ister usage.



The first part of Algorithm ?? is the Miller loop, first proposed by Miller [?] and
later enhanced by others. It is a standard double-and-add loop performing the elliptic-
curve arithmetic, including line addition and line doubling. After each line function, an
Fp12 multiplication is performed.

The second part is the final exponentiation, which takes the output of the Miller

loop f ∈ Fp12 and computes f
(p12−1)

l . Here we use the method of Devegili, Scott, and
Dahab [?] and split p12−1

l to (p6 − 1)(p2 + 1)(p4−p2+1
l ) to speed up the computation.

Overall, the main computations are those of the line functions and Fp12 operations.
We construct Fp12 as a series of tower fields as follows.

Fp12 =Fp6 [Z]/(Z2 − τ) with τ = Y

↑
Fp6 =Fp2 [Y ]/(Y 3 − ξ) with ξ = (X + 1)

↑
Fp2 =Fp[X]/(X2 − σ) with σ = −2

↑
Fp

In this case, an Fp12 operation can be implemented by a series of Fp operations. Fur-
thermore, the elliptic curveE(Fp) itself lives in Fp. As a result, all computations can be
decomposed into a set of Fp multiplications and additions. As we will see subsequently,
we exploit this fact to get a better speed at a moderate price in terms of control logic.

3 High-level architectural design

Fig. ?? shows the the five major blocks of the Hydra architecture, namely, Axpy Engine,
Data Cache, Decoder, Instruction Cache, and Top Control. The main design philosophy
behind Hydra’s architecture is the separation of data and control, a key enabler for both
programmability and high-throughput data processing. As shown in Fig. ??, data flows
from Data Cache to Axpy Engine, the main computational unit of Hydra, and gets writ-
ten back to Data Cache via Decoder and Top Control after being processed, as some of
the results may be used by the latter two blocks for control purposes. On the other hand,
control information is mainly passed from Decoder to Data Cache via Top Control af-
ter instructions are fetched from Instruction Cache and decoded at Decoder. Moreover,
Top Control also handles the input and output of the entire coprocessor, interfacing with
the host processor via the AMBA (Advanced Microcontroller Bus Architecture) High-
performance Bus (AHB), so Hydra can easily work with any host processor that speaks
this protocol such as ARM microprocessors. As a result, a typical workflow might look
as follows.

1. The host processor checks the status of the coprocessor until it is in the idle state.
2. The host processor sets the environment registers of the coprocessor via Slave Port

(shown as the “S” at the bottom of Top Control in Fig. ??), including the entry point
of the program, as well as the addresses of the source and target data.



Fig. 1. High-level architectural design of Hydra

3. The host processor activates the coprocessor by sending a signal to the related con-
trol register.

4. Through Master Port (shown as the “M” at the bottom of Top Control in Fig. ??),
the coprocessor loads the instructions to Instruction Cache from external memory.

5. The coprocessor runs the program accordingly and loads the input data from exter-
nal memory via Master Port.

6. After the computation finishes, the coprocessor notifies the host processor using an
interrupt mechanism.

In synthesizing a cryptographic coprocessor for pairing, most of the silicon area is
for implementing the arithmetic unit (AU) that computes finite-field multiplications and
additions inside Hydra’s Axpy Engine. Furthermore, multipliers like the one in Fig. ??
typically takes up the most area because multiplication tends to be much more expensive
than addition.

Further analysis shows that to compute an optimal ate pairing, we need about 18500
Fp multiplications and 85000 additions/subtractions. Typically, a multiplication oper-
ation takes about 5 times or more cycles than an addition/subtraction operation. This
means that the time spent on multiplication is roughly the same as that on addition/subtraction,
which is quite different from the typical multiplication-bound algorithms.

In this case, it is advantageous to use heterogeneous AUs, some of which have com-
plete functionality (called full AU, or FAU), while others are only capable of computing
addition and subtraction (called add-only AU, or AAU). Since an AAU is much smaller
than an FAU, we expect a higher resource utilization if there is enough parallelism to
be extracted by our scheduler.

Optimal resource allocation and scheduling on a set of heterogeneous computational
units is in general a hard problem and has been intensely studied in the past. Here we are
dealing with the most general cases because we are working with application-specific
integrated circuits (ASIC). As we have seen earlier in this section, our architecture is
similar to a general-purpose processor. For example, we use a register file to connect



X X X X X X X X

X+

b0 b1 b2 b3 n3n2n1n0

ai

n�

+ + + +

+

reg reg reg reg

m

Fig. 2. A four-limb Montgomery multiplier

all AUs, which is actually implemented as part of Data Cache in Hydra. This greatly
simplifies inter-AU communication, as all communication will need to go through the
register file as the central hub. Also, as long as the register file is large enough, we
can completely eliminate load/store operations from/to external memory. Furthermore,
our compiler generates straight-line code, so there is no branch and loop, which further
simplifies the analysis.

Now that we have a better understanding of our problem, we turn to the literature
to seek solutions. We have tried without success several traditional methods, such as
using critical path as the main heuristic for scheduling, as the memory required is un-
acceptably large. So far, most works in the literature focus on achieving the best speed
performance. Although some of these works also take communication into account,
none of them have considered memory constraints. The closest work to ours is per-
haps that of Cordes, Marwedel, and Mallik [?], in which various constraints including a
limit on the number of parallel tasks on the target system-on-chip (SoC) are taken into
account, but the memory constraint was not considered.

In this paper, we experiment with one of the simplest methods, namely, the greedy
method, to see if it can accelerate our pairing computations. That is, we use a simple
in-order architecture in which an instruction is issued if all its dependencies have been
resolved, and there is available AU to execute the instruction. This makes the hardware
design relatively simple and shifts some work to compiler, which will need to come
up with a plan of resource allocation and schedule. It bases its decision on informa-



tion including the sequence of instructions to be executed and the resource constraints
such as the composition of the heterogeneous AUs and the amount of working memory
available to hold the intermediary results.

We briefly describe our design here. In each cycle each idle AU will sequentially
search for a subsequent instruction whose input data is ready and can be done by this
AU. If such an instruction exists and there is enough space in the working memory, it
will be issued to the AU. The AU will be set in a busy state for however many cycles
required to execute the instruction, after which it will go back to idle state and try to
grab more work to do.

In searching for instructions, an AU only looks for the type of instructions that it
can execute and skip the other types. Naturally, there is a trade-off in computation vs.
memory because each additional AU will require additional working memory, so it is
not immediately clear whether more AUs would lead to a better ATC product. Here
we resolve this issue by imposing a limit on register use, under which AAUs will only
fire when there is still a reasonable amount of memory available. In other words, FAUs
have higher priorities in instruction issuing whenever there are ready multiplications.
However, if there is not enough memory space for executing a multiplication, FAUs can
also be used for additions/subtractions.

There is another resource we need to consider, namely, the I/O bandwidth of the
register file. When there are multiple AUs competing for reading respective input data
from the register file, the bandwidth limitation introduces extra delay, which in turns
imposes an upper bound for the amount of parallelism we can achieve.

Putting all these together, our compiler will generate a schedule for each of the
AUs, dictating what instruction and when each of the AUs should execute, as well as a
resource allocation plan, dictating which register should hold what intermediary result.
Our compiler automatically searches through the solution space of all feasible schedules
and resource allocations.

4 Datapath design

4.1 Full arithmetic unit

As we need to deal with general moduli, we use the well-known Montgomery method
for computing modular multiplication A×B mod N [?]. The basic idea is to compute
Ā = AR and B̄ = BR first, and then compute (Ā × B̄)R−1 mod N using the Mont-
gomery reduction algorithm. With a good choice of R (usually a power of two), the
operation could be computed efficiently.

Our implementation is a direct realization of Montgomery’s algorithm. Fig. ??
shows an example of a four-limb multiplier, and in our actual implementation there
are 17 limbs. We use 256-bit operands in the arithmetic units. Also, we use 272 bits to
represent a single Fp element to allow further optimization such as lazy reduction.

Operands A, B, and N are divided into 17 limbs: ai’s, bj’s, and nk’s. It takes 17
cycles to compute the partial products and 3 more cycles, the carries. In the i-th cycle
(0 ≤ i < 17), the partial products of ai × B and m×N are computed using 34 16-bit
multipliers and then added with the shifted intermediate results from the previous cycle



to produce the intermediate results rj’s. The value of m is obtained by summing the
most significant part of r0 and the least significant part of r1 from the previous cycle,
as well as the product ai × b0, then multiplied by n′.

Carries are not propagated among the adders in Fig. ?? within the 17 multiply-
and-add cycles. As a result, the rj’s could be at most 16 × 2 + dlog2 17e = 37 bits
wide, which decides the width of the adders as well as that of the registers. After the
17 multiply-and-add cycles, 6 adders are reused to add up the carries in 3 cycles. For
the sake of clarity, the wires and MUXs required for reusing the adders are omitted in
Fig. ??. The critical path, as illustrated in Fig. ??, consists of 3 multipliers and 3 adders.

4.2 Add-only arithmetic unit

An AAU consists of an array of 17 adders and can calculate A + B in a single cycle,
as well as its carry in another cycle. Since we only add two 16-bit numbers per adder,
the intermediate result will be at most 17-bit wide. Unlike the carry computation in
FAU, AAU only need to carry 1 bit, so both the register size and the number of cycles
can be significantly reduced. Using a design similar to carry-select adders, the carry
computation in AAU is very fast compared with that in FAU.

The critical path of AAU is not important, as it is dominated by FAU. Synthesis
results show that the area of an AAU is only about 1/10 of that of an FAU. This is
largely due to lack of multipliers, use of narrow adders (17 vs. 37), and possibly a
shorter critical path.

5 Control design

There are three essential parameters in Hydra’s design: the numbers of FAUs and AAUs,
as well as the register-file size. Through simulation, we found that the combination
of one FAU and two AAUs delivers the best performance, which we will describe in
more detail in Section ??. Fig. ?? illustrates conceptually all the relevant components,
including datapath and control, for supporting heterogeneous AUs. The counter serves
as the synchronization unit by providing the cycle number. An operation code consists
of the addresses of the input and output data, as well as the cycle number that it should
be issued. The decoder decides what operation need to be done in this cycle according
to the operation code and the counter value.

Each AU has its own decoder and a separate list of operation codes. These decoders
are independent of each other, i.e., there is no communication among them. Therefore,
the compiler takes full responsibility of making sure there is no conflict among the
operations of all the components.

In each cycle, the decoder (implemented inside Decoder) decides on one of the
following operations according to the code that matches current counter value.

1. Idle.
2. Send the address for reading data from the register file.
3. Retrieve data and forward it to the AU. This could be done concurrently with oper-

ation 2 in the same cycle.



Counter

Decoder Decoder Decoder

code code code

FAU AAU AAU

Register File

OR

Data
Data
addr

Fig. 3. Conceptual design of heterogeneous datapath and its control

4. Start the computation of the corresponding AU. This could be done concurrently
with operation 3 in the same cycle.

5. Retrieve data from an AU, send the address and the data to be stored to register
file. This cannot happen concurrently with operations 2 and 3, as there is only one
address port in each register file.

Below we describe in more detail Hydra’s instruction and data scheduling mech-
anisms, which is responsible for instruction loading and data management for Axpy
Engine. It will prepare the corresponding instruction fetch and data loading of corre-
sponding operation for Axpy Engine. Typically, the scheduling unit would load and
decode the instruction from Instruction Cache and send the corresponding addresses
to Data Cache for data loading. Furthermore, the scheduling unit will handle instruc-
tions like jump and data rescheduling. This way Axpy Engine can concentrate on data
processing and avoid unnecessary idle states.

Hydra uses a data prefetch mechanism. To deal with data loading, a general-purpose
processor usually uses either extra cycle or specific instruction to maintain. In both
cases, the datapath will be in idle state, waiting for data loading. Hydra uses three in-
struction buffers. The first instruction buffer, the preloading buffer, stores the instruction
after the next instruction. The second instruction buffer stores the next instruction itself,
and we call the instruction stored in this buffer the “preparing instruction.” The last in-
struction buffer is current buffer, which stores the instruction being executed in Axpy
Engine. In general, we can decode the addresses from the instruction in the preloading
buffer and send them to Data Cache for data prefetching, so after the current instruction
finishes execution, the data will be ready at Data Cache. While the preparing instruction
is about finish, the input register of Axpy Engine can be loaded with the corresponding
data from Data Cache. This way the preloading instruction can be executed with the
corresponding data already ready in input registers. In the case with single-cycle in-
structions followed by a multi-cycle instruction, the preparing instruction buffer serves



as the temporal preloading instruction buffer, as the current instruction cannot finish in
one cycle. With such scheduling mechanisms, we can overlap data loading with data
processing in one instruction. Moreover, the prefetch technique avoids the conflict be-
tween data loading and processing. We use similar mechanisms for prefetching from
and writing back to external memory.

6 Performance evaluation and concluding remarks

As mentioned in Section ??, there are three essential parameters in the proposed copro-
cessor design. In this section, we first investigate the settings with best performance via
architectural exploration and then compare our results against the state of the arts.

All our designs are synthesized using Synopsys Design Compiler. In addition, SRAM
blocks such as Data Cache and the register file in it are generated by Artisan’s mem-
ory compiler. For architectural exploration, we use Bluespec System Verilog [?]. These
designs are then synthesized using TSMC standard cell libraries for their 90 nm and
130 nm technologies. However, Bluespec’s synthesis results are typically 2–3 times
less efficient in terms of ATC product than hand-coded designs using low-level hard-
ware description languages such Verilog or VHDL. Therefore, after finding out the best
set of parameters, we hand-code a design using Verilog and synthesize it using TSMC
90 nm technology.

Table ?? shows the performance of Bluespec’s synthesis results using different num-
bers of FAUs and AAUs while keeping register-file size fixed. Using more AAUs should

Table 1. The performance achieved by a single-bank, 96-entry register file

Number of FAU 1 1 1 2 2 2 2

Number of AAU 1 2 3 1 2 3 4

Area (k gates) 144 157 168 246 256 268 280

Total time (ms) 4.34 3.60 3.62 3.23 2.72 2.57 2.55

ATC product 626.20 565.42 608.24 793.47 696.93 687.93 714.42

result in better timing results, but the marginal improvement diminishes as the following
start to surface.

1. Multiplication-related operations become the bottleneck of the design, so adding
extra AAUs can no longer shift any load from the FAU.

2. The bandwidth of the register file becomes fully occupied.
3. Last but not least, the register file itself becomes fully occupied.

From then on, the increase in area cannot bring in proportional improvement in speed,
making it disadvantageous to add more AAUs. As seen in Table ??, with only one FAU,
the bound is two AAUs.

Deploying more FAUs will increase this bound of adding more AAUs. However, we
hit the limitation imposed by register-file bandwidth, and the extra FAU will compete



for the bandwidth with other AUs. In this case, the bound becomes three AAUs, and the
resultant ATC products are all worse than using only one FAU.

Table ?? shows the performance of Bluespec’s synthesis results using different sizes
of register files in the setting of one FAU plus two AAUs. Increasing the number of

Table 2. The performance achieved by one FAU and two AAUs

Register-file size 80 88 96 128 160

Total time (ms) 5.14 4.67 4.60 4.58 4.57

registers means that there will be more spare registers for the extra AAUs to fetch next
operations and thus improves the speed performance. This phenomenon becomes more
noticeable when there are more AAUs. However, this comes at a price of a larger register
file, so in general it does not improve the ATC product at all.

In Table ??, we compare the performance of our designs against that of two best
works from the literature. We stress that it is in general very difficult to compare the

Table 3. Performance comparisons

Technology Total area Cycle time Total time ATC product
This work (hand-coded Verilog) 90 nm 116 k gates 5 ns 3.04 ms 353.6
This work (Bluespec) 90 nm 157 k gates 5.92 ns 3.6 ms 565.2
This work (Bluespec) 130 nm 166 k gates 9.73 ns 5.88 ms 976.2
Kammler et al. [?] 130 nm 164 k gates 2.96 ns 15.8 ms 2591.2
Fan, Vercauteren, and Verbauwhede [?] 130 nm 183 k gates 4.9 ns 2.91 ms 532.5

performance of designs using different fabrication technologies. Furthermore, architec-
tural differences also make fair comparison even more difficult, so here we can only try
our best to compare apple to apple.

When compared against the design by Kammler et al. [?], it is clear that our designs
achieve better ATC products. This is mainly because they have a scalar design in which
a significant portion of the transistors are allocated to non-datapath components such as
control/decoding logic and SRAM. Furthermore, a significant portion of the energy is
typically consumed by the circuitry that supports execution of software programs in a
processor architecture. A scalar design means that the density of the program code tends
to be quite low, resulting in a much less efficient design in terms of energy consumption.
In return, the benefit of such an approach is a processor that is capable of executing a
wide variety of programs not limited to cryptographic pairing. In contrast, our design is
a coprocessor and would require the help from a microcontroller in a complete system.

Lastly, it is even more challenging to compare our result with that of Fan, Ver-
cauteren, and Verbauwhede [?]. First, although our synthesis result at 90 nm seems
better than theirs at 130 nm in terms of ATC product, it is difficult to tell whether this is



merely due to advancement of fabrication technologies. There are several ways we can
do a back-of-envelope estimation, and the best we can say is that these two designs are
roughly on par with 10–15% of error. On the one hand, our design provides full connec-
tivity with industry standard AMBA AHB as well as a high degree of programmability
that would allow the support of, e.g., elliptic curve cryptography on curves over large
characteristics. In order to achieve this flexibility, our design needs to load programs
from external memories, while on the other hand, their design does not require inter-
facing with external memories because they are specialized for Barreto-Naehrig curves.
At the end, the only conclusion we can draw from this apple-orange comparison is that
the two designs are roughly on par with different directions of optimization.

Acknowledgments. This work was also supported by National Science Council, Na-
tional Taiwan University and Intel Corporation under Grants NSC102-2911-I-002-001
and NTU103R7501.


