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Abstract. We propose the idea of building a secure hash using quadratic
or higher degree multivariate polynomials over a finite field as the com-
pression function. We analyze some security properties and potential
feasibility, where the compression functions are randomly chosen high-
degree polynomials, and show that under some plausible assumptions,
high-degree polynomials as compression functions has good properties.
Next, we propose to improve on the efficiency of the system by using
some specially designed polynomials generated by a small number of
random parameters, where the security of the system would then relies
on stronger assumptions, and we give empirical evidence for the validity
of using such polynomials.
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1 Introduction

There is a rather pressing need to find new hash functions as of today, after the
work of Wang et al culminated in collisions of some well-known and standard
hash functions [13, 14]. One common feature of the currently used hash functions
is that it is more an area of art, where the design of the system is based on certain
procedures and the security of the system is very very difficult to study from
the theoretical point of view. For example, even the work of Wang et al is still
not well understood and people are still trying to analyze the methods used in
some systematical way. [12]

Naturally, one direction is to look for provably secure hash functions, whose
security relies on well-understood hard computational problems. These hashes
tend to be slower, although they have a saving grace in terms of having some
measure of provable security.

In these formulations, the designer seeks a reduction of the security of the
compression function to some other intractable problem. Of course, we should
be careful about these “provably secure” constructions. There are two pitfalls:

— Often, the security reduction has a large looseness factor. The practical result
is that these reductions end up “proving” a very low security level — the
complexity of the “underlying hard problem” divided by the looseness factor
— which in a practically-sized instance will be insufficient to satisfy security
requirements [10,9, 17].
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It should be mentioned, however, that often times this kind of reductions
shows that if hard problem A is exponential in a power of n, then so is
cryptosystem B under suitable assumptions. So having a proof still beats
not having one because it implies that there are no real serious gotchas.

— The other possibility is that the security of the hash function may only
loosely depend on the hard problem. The case of NTRU’s signature schemes
exemplify this possibility. One can only say in this case that the scheme is
inspired by the hard problem.

In this paper, we propose our own version, which is inspired by the M@
problem, and study how well it can work. Our paper is arranged as follows.
We first study the case of random systems. Then we study the case of sparse
construction and present the main theoretical challenges and its practical ap-
plications. We will then discuss other new ideas and the future research in the
conclusion. Much work remains in this area in terms of security reductions and
speed-ups.

2 The MQ frame work

Problem MQ: Solve a polynomial system, with coefficients and variables in
K = GF(q), where each p; is randomly chosen and quadratic in x = (1, ...,Z,).

p1(x1, ey ) =0, p2(x1, .y 2n) =0, ooy P (1, .oy ) = 0, (1)

MQ is NP-hard generically [7]. If instead of quadratics, each p; is of degree
d; > 1, the problem may be termed called M P, which is of course no easier than
MQ), so must also be NP-hard. That a problem is NP-hard generically need not
mean that its solution is of exponential time complexity in its parameters on
average, or imply anything about the coefficients. However, today, as m and n
increases to infinity, we believe that the following holds.

Congecture 2.1. Ve > 0, Pr(n/m = ©(1), MQ can be solved in poly(n)) < e.

The conjecture above or something similar to it is the basis of multivari-
ate public-key cryptosystems [6,15] as well as some symmetric cryptosystems
[3]. The latest way of tackling such systems involve guessing at some optimal
number of variables (depending on the method in the closing stage) then use a
Lazard-Faugere solver (XL or Fjy, [2]). We also believe, and it is commonly ac-
cepted that the complexity to solve the set of equations is indeed exponential, if
pi(x1,...,2,) are polynomials of a fixed degree whose coeflicients are randomly
chosen — say that p;(z1, ..., ¢, ) are randomly chosen quadratic polynomials. We
will assume this statement as the security foundation.

Under this assumption, the first straightforward idea is to build an iterated
hash using completely random quadratic polynomials as compression functions,
namely the one way function F : K?* — K™ is given by

F(I1,...,In,y1,...7yn) = (fl(zla"'7xn7y1a"'7yn)7"'7fn(x1;"-;znaylr"ayn))a
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where each f; is a randomly chosen quadratic polynomial over GF(q). All the
coefficients are chosen randomly. We will use this as a compressor with state x =
(z1,...x,), and each input message block is y = (y1,...,¥yn). In the following,
we show that this cannot work and suggest the next improvements, particularly
cubic and stacked (composed) quadratics, and the idea of using the least number
of parameters to determine our maps.

2.1 General Remark on Solvability

A rough estimate of effort to solve these M@ problems: 20 quadratic equations in
20 GF(256) variables: 280 cycles; 24 quadratic in 24 GF(256) variables: 292 cycles.
It is harder to solve higher-order equations: for reference, 20 cubic equations in
20 GF(256) variables takes about 2190 cycles, 24 cubics in 24 GF(256) variables
about 2!25 cycles, and 20 quartics in in 20 GF(256) variables about 212% cycles.
Clearly, the problem for our hash schemes is not going to be the direct solu-
tion (algebraic attack) using a polynomial system solver. The above shows that
any multivariate polynomial systems are not really susceptible to preimage or
second preimage attacks.
Note: There is a special multivariate attack to solve under-defined systems
of equations [5] that applies to this situation where there is a lot many more
variables than equations, but

— the number of variables that it reduces is proportional to the square root of
n, and
— for ¢ > 2 under most optimistic estimates it has proved to be rather useless.

We would then, of course, try multivariate quadratics as the obvious idea.
However, it is not secure because collisions are easy to find:

Proposition 2.1. With randomly chosen F := F(x,y), it is easy to solve the
equation.
F(x1,y1) = F(x2,y2)

Proof.
F(x+b,y+c)—F(x,y)=0

is a linear equation in 2n variables (x,y) and n equations, so must be solvable.

However, we this points out a better way to building a secure hash.

3 The Applications of Sparsity

In Section 3 we show that the compressor and hence the hash function is likely
to be collision-free. In the following sections, we propose some naive instances,
which has the security level at 289 or 2!2%, but those system are very slow for
practical applications. A natural idea is to use sparse polynomials. This is as in
the case of the central maps of TTS signature schemes, namely we will choose
each of the above polynomial to be a sparse polynomial. However, the security
relies on the following stronger assumption:
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Conjecture 3.1. As n — oo and m/n — k € RY, for any fixed 0 < ¢ < 1 a
random sparse polynomial system of any fixed degree with a randomly picked
€ proportion of the coefficients being non-zero (and still random, if ¢ > 2) will
still take time exponential in n to solve.

This can be termed a version of the conjecture SMP (sparse multivariate
polynomial). SMP is only one of the many conjectures that we can make, be-
cause as long as we are not dealing with packed bits, the speed of the imple-
mentation depends more on the size of the parameter set than how we use the
parameters. If a set of polynomials is determined from a relatively small set of
parameters, we can call them “sparsely determined”.

There is no real reduction known today that reduces SMP to a known hard
problem. However, we can justify this assumption somewhat by trying to solve
these sparse systems, and by extension sparsely generated systems, using the
best tools we have.

— If we solve the system with an XL-with-Wiedemann like attack [16,17], it is
clear that the running time will simply be € times that of the corresponding
dense problem.

— There is no commercially available implementation of F5, however, it runs at
the same degree as F4 and mostly differ in the fact that Fg avoids generating
extraneous equations that are bound to be eliminated.

— The most sophisticated solver commercially available is MAGMA [4]. We ran
many tests on random systems, random sparse systems, and not necessar-
ily sparse but sparsely generated systems. In every case, solving the sparse
determined systems takes roughly the same amount of time and memory as
the non-sparse ones.

— We know of some specialized methods that solves sparse systems, but some
have a different definition of sparsity than we have here [11], and some are
not well-quantified.

Please see the appendix for the tests that we ran. Clearly, the key is to choose
wisely a correct proportion e of the nonzero terms.

1. How many we choose such that it is fast?

Our answer: no more than maybe 0.1% (see below).
2. How many we choose such that it is secure?

Our answer: a predetermined fixed percentage.
3. How do we choose the sparse terms?

Our answer: probably randomly.

4 Cubic Construction

Suppose that ¢ = 2¥ and the F above is changed to a random cubic K?* — K™,
then the following argument that this compression function is secure. -

Let K be a degree n extension of K. We have a map ¢ which identifies K as
K".
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Then it is clear from the work of Kipnis and Shamir [8] we can show that I’
can be lifted to be a map from K x K to K. Then we have

F(X,Y) = Z Az‘ijqi+q'j+qk + Z Biijqi+q'quk+
R S
STEXTYT Y FpXC XY+ Gy v+

ST HxT 4 Ly 1

In this case, we can view all the coefficients as random variables.
We can show that no matter how one the choose the difference of the (X,Y)
coordinates that the coeflicients of the difference, namely

FX+X,Y+Y')-F(X,Y)

are still linearly independet random variables as a quadratic function.
By mathematical induction, we can prove the following theorem.

Proposition 4.1. Define a function in the Kipnis-Shamir form

FXY) = 3 A X0 o 37 B Xo eyt 3 0 Xy 3 e
+ Z Einquqj + Z Fininqj + Z Giquiyq-f + Z HinI " Z L'Yqi LT

where each coeffcients are linear independent random variables and i, j, k are less
than a fized integer r, the nonzero coefficients of the function

FX+X.Y+Y')-F(X,Y)
are also linearly independ random variables.

Proof. Let us first assume that r is zero, we have that

FX+X,Y+Y')-F(X,Y)
= (34000X" 4+ BoooY')X? + (Cooo X’ + 3DoooY")Y? + (2X' Bogo + 2Y'Coo0) XY
+ (3A000 X" + 2X'Y' Booo + Y"*Cooo + EooY' + 2Fp0 X)X
+ (3DoooY"? 4+ 2X'Y'Cooo + X"?Bogo + 2GooY’ + Ego X')Y
+ Apoo X" 4+ Booo X"?Y' + Cooo X'Y"? + DoooY"® + Ego XY + FooX"? + GooY'? + Hy X' + I,Y’

The first three terms’ coefficients are clearly independent, and involves only
the Agoo, Booo, Cooo, Dooo, as long as (X', Y’) are not both zero. Then in the
fourth and the fifth term we have Eg Y’ 4+ 2F50 X’ in X term and 2Go0Y’ +
FEy X' in the Y term. Therefore the initial 5 coefficients are linearly independent.
Finally, we know that HyoX’ + IyY’ in the constant term ensures that all the
coefficients are linearly independent.
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Clearly we can see that we write the difference above in the form of
FX+X,Y+Y)-F(X,)Y)=AxQ x Z,

according to the order of degree of the (X,Y’) terms, where

A= (140007 ...... ,Io),
and @ is the coefficient matrix (which may depend on X', Y”) and
Z = (X%Y% XY, X,Y,1)

Then @ clearly have a blockwise triangular structure, which makes the proof
possible.

Then suppose the theorem is proved when i, 5,k < r, we can use the same
trick to proceed to i, j, k < r, namely we will write down

FIX+X,Y+Y)=F(X,Y)=AxQx 2",

where Z is arranged in the form that the first block are the terms involves terms
that either have X7 or Y7 , then the rest. The A is arranged in the same way
that the first block contains the terms whose subindices must have r. Then we
can write down the expresssion explicitly and show the independence, just as in
the case r = 0. We will omit the tedious detail here.

Corollary 4.1. For a quadratic map M : K?" — K" with uniformly chosen
random coefficients, we can construct a cubic map F : K%” — K™ and a differ-

ential X', Y" such that M(X,Y) = F(X + X" Y +Y’) — F(X,Y), such that X,
Y’ and F have uniformly random coefficients or components.

From this proposition, we can infer directly the following important conclu-
sions.

Proposition 4.2. If I is randomly chosen,the function F(X + X" )Y +Y') —

F(X,Y) is also random as long as X' and Y’ are not both zero.

Therefore we have

Proposition 4.3. If F' is randomly chosen,the function F(x+b,y+c)—F(x,y)
s also random as long as b and c are not both zero.

Theorem 4.1. A random cubic F : K*" — K™ (written as F := F(x,y), X,y €
1. impossible to invert or to find a second image for, in polynomial time.
2. is impossible find a collision for, in polynomial time.

Proof. From the proposition above, we can assume a attacker knows the dif-
ference of the collision he or she intens to find. In this case, it means that the
attacker have the equation F(x + b,y + ¢) — F(x,y) = 0 that he or she must
solve if he or she can find the collision. However, we just showed that no matter
how one chooses b and c, the equation can be viewed as a random equation.
Therefore it is impossible to solve in polynomial time.
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5 Random Cubic Polynomial

We use completely random cubic polynomials, namely the one way compression
function is given by

F(X’Y) = (fl(x7y)7"'7fn(X7Y>)a

where f; is a randomly chosen cubic polynomial over GF(q). Here x,y € K™ as
before. All the coefficients are chosen randomly. We will use this as a compressor
in a Merkle-Damgard iterated compression hash function. For example we may
use the following Merkle-Damgard like structure:

State: x := (21, Zo, ..., Tp).

Incoming Data Block: y := (zy41,. .., Ta,).

Compression: F : (GF(q))*" — (GF(q))™.

Initial State: F(P(a1,...,a,/2), P(ay/241,---,0,)), Pis arandom given quadratic
K"/? — K™,
According to [3], the output of P is impossible to predict or distinguish from
random.

Final Output: in (GF(gq))", possibly with some post-treatment.

Assuming 160-bit hashes (SHA-1), preliminary runs with a generic F:

— 40 GF(256) variables into 20: 67300 cycles/byte (6.0 cycles/mult)
— 80 GF(16) variables into 40: 4233000 cycles/byte (3.2 cycles/mult)

Assuming 256-bit hashes (SHA-2), preliminary runs with a generic F:

— 32 GF(21° variables into 16: 48200 cycles/byte (19 cycles/mult)
— 64 GF(256) variables into 32: 3040000 cycles/byte (6.0 cycles/mult)
— 128 GF(16) variables into 64: 9533000 cycles/byte (3.2 cycles/mult)

Some implementation details:

— The coefficients of the map F' is taken from the binary expansion of 7.

— Multiplication in GF(16) and GF(256) are implemented with tables. In fact,
in GF(16), we implement a 4kBytes table with a where we can multiply
simultaneously one field element by two others.

— Multiplication in GF(2'¢) is implemented via Karatsuba multiplication over
GF(256).

But using a random cubic system is not very efficient in general, the new
idea is the next one namely we will use sparse polynomials.

5.1 Sparse Cubic Polynomial

The idea is the same as above but we choose each of the above cubic polynomial
to be sparse. Note that due to the new result by Aumasson and Meier [1], we
now advise that only the non-affine portion of the polynomials be sparse.
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The key point is to pick a the ratio € of the nonzero terms. In general,
storing the formula in a sparse form takes extra space and time to unscramble
the storage, so it is never worthwhile to have € > 1/10 or so in practice. In the
examples in the following, less than 0.2% of the coefficients are non-zero (one in
500). To give one example, there is around 30 terms per equation in a 40-variable
cubic form.

Assuming 160-bit hashes (SHA-1), preliminary runs with a generic sparse F":

— 40 GF(256) variables into 20, 0.2%: 215 cycles/byte
— 80 GF(16) variables into 40, 0.1%: 4920 cycles/byte

Assuming 256-bit hashes (SHA-2), preliminary runs with a generic sparse F':

— 32 GF(2° variables into 16, 0.2%: 144 cycles/byte
— 64 GF(256) variables into 32, 0.1%: 3560 cycles/byte
— 128 GF(16) variables into 64, 0.1%: 9442 cycles/byte

6 Stacked (Composed) Quadratics

Having noted that cubics don’t work so well, another way is to have quartics
which are composed of quadratics. The first quadratic maps 2n variables to 3n,
the second one then maps the 3n to n. This avoids the problem by using a set
of quartic that can still be computed relatively quickly.

The first question is, whether this is a good idea.

Proposition 6.1. Let the compression function F be equal to Fy o Fy, with
generic Fy : K*" — K3 Fy: K3 — K™,

Proof. Schematically, F; ' = F; o F~1. Hence If we can invert F, then we can
invert F5. This is hard by assumption.

Proposition 6.2. F' is collision-resistant.

Proof (Heuristic). We note that F; has no collisions on average, and if it has
a pair it is hard to find. Thus, a collision on F' means a collision on Fs, which
poses no problem, but then we will have to solve F} twice, which is difficult by
assumption.

Now, let us consider a direct differential attack and compute F¢). Using the
chain rule, all the polynomials belong to the ideal generated by the polynomials
of Fi. Since for generic polynomials we should not see a reduction to zero under
the degree of regularity [2], the solution is at as hard as inverting F.

Assuming 160-bit hashes (SHA-1), preliminary runs with a function F =
F, o Fy, with generic F; : K?" — K3, Fp : K3 — K"

— 40 GF(256) variables into 20: 27400 cycles/byte
— 80 GF(16) variables into 40: 101200 cycles/byte
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Assuming 256-bit hashes (SHA-2), preliminary runs with F' = Fyo Fy, generic
Fl, FQI

— 32 GF(2° variables into 16: 24100 cycles/byte
— 64 GF(256) variables into 32: 64200 cycles/byte
— 128 GF(16) variables into 64: 247000 cycles/byte

In this way we can explore another form of sparsity, which relies on the idea
is that any quadratic map can be written as f o L, where f is a certain standard
form and L is an invertible linear map. Now we will instead choose L to be
sparse.

In this instance, the key question are still the same:

1. How many we choose such that it is fast?
2. How many we choose such that it is secure?
3. How do we choose the sparse terms?

In this area, we note that it is not necessary that L be sparse, but only that it be
decided by a relatively small number of parameters, and that the evaluation is
fast. Along these lines, a new construction is the continued sparse compositions,
where we use composition of sparse random linear maps. We propose some in-
stances of these hash functions for practical applications. There are furthermore
several new ideas that should be further studied.

6.1 Sparse Composition Factor: “Rotated” Quadratic Sets

The idea is that any quadratic map can be written as f o L, where f is a certain
standard form and L is an invertible affine map. Now we will choose the linear
part of L to be sparse. The obvious standard form for characteristic 2 fields is
to start with the standard form (“rank form”).

f1(X) = 2120 + 2324 + - - Ty 1T

Let us explain a little why. Let & be a field of characteristic 2. A quadratic
form in n variables over k is defined by Q = Zl<i<j<npijxil'j; pij € F.

Theorem 6.1. Any quadratic form over k is equivalent to

v T+v d
Q = Z Ty + Z (ajz? + zjy; + bjy?) + Z kg
i=1 j=v+1 k=1

with ¢, 0 and 2v + 27+ d < n.

When 2v+27+d = n, the form Q' is regular. The number d is the deficiency of
the form and the form ¢’ is completely regular, if Q’ is regular and its deficiency
is zero, which corresponding the case that the corresponding symmetric form is
non-degenerate. A randomly chosen system is in general expected to completely
regular.

Furthermore, we have
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Theorem 6.2. If two quadratic forms over k, ¢+ q1 and Y + q2, are equivalent
and v is completely reqular, then qo and q1 are equivalent over F'.

We will use this to give a general characterization of a quadratic function.
Any quadratic function f(x1,...,%2,) can be written in the form

f(.%‘l, ..,a:n) = Z Q;;T;T; + Z b;x; +c¢

1<i<j<2n 1<i<2n

where a;j, b;, c are in k. We know that through a linear transformation of the
form L(x;) = x; + d;, if the quadratic part is non degenerate, we can have that

fLa(z1, . 20)) = Z ay;ziz; +c.

1<i<j<2n

From the theorem above we know that there is a linear map Lo such that

(L2 o Ly) (21, -, @n)) = Z Toi—1T2; + fo +c,

1<i<n i€s

where S is a set consisting of pairs in the form of (25 — 1,25). The simplest form
this kind of function is surely

F((Lyo Ly)(w1, oy mn)) = D @i1a2 + ¢,

1<i<n

and its difference from others in some sense are something of the linear nature,
which can be neglected in some way. From this we conclude that a general
quadratic function can be represented as: F' o L, where

/
F= E Toi—1T2; + C,

1<i<n

which is the basis we will use to build our hash function.

Knowing that any quadratic functions from GF(¢q)* — GF(q) can be written
this way. The key question are similar now: How do we choose L such that it is
fast? How many we choose such that it is secure? How do we choose the sparse
terms?

In this particular instance, there is something that leaps out at us. starting
with x; := x, we compute f1(x1), then transform x; — X2 := LoX; + c2, where
L5 has three randomly chosen entries in each row, and fa(x) := f1(x2). Continue
in this vein and do x9 — x3 := L3Xs + c3, f3(x) := fi(x3), and so on and so
forth.

A set of quadratic polynomials like this we call “rotated”. “Rotated” quadrat-
ics are obviously a kind of sparsely generated polynomials, and they behave like
random ones under F4. In Fig. 1 in the appendiz, data points denoted “non-
random sparse” polynomials are rotated.

Assuming 160-bit hashes (SHA-1), preliminary runs with a composed rotated
F:
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— 40 GF(256) variables into 20: 1720 cycles/byte
— 80 GF(16) variables into 40: 3220 cycles/byte

Assuming 256-bit hashes (SHA-2), preliminary runs with a composed rotated.
F:

— 64 GF(256) variables into 32: 8100 cycles/byte
— 128 GF(16) variables into 64: 24100 cycles/byte

Again, we note that the transformation L has random constant terms. This
leads to random affine parts in the structure throughout, to defend against the
attack below.

7 Further Discussion: Variant Ideas and Other Attacks

We see that our hash schemes are roughly on a par speedwise with other schemes
that depends on hard problems. It is true that there may be better formulations
of the same idea, but M@ is a known hard problem, which should lend a measure
of confidence.

7.1 Other Attacks

There are many specialized attacks in multivariate public key cryptography,
especially the true multivariates, that one may think to use to attack our systems.
But one should realize that due to the property of random polynomials; it is hard
to imagine the usual attacks of linear and differential cryptanalysis working since
cubic and quartic equations are so far removed from linearity. From what we can
see, all but two related ones are now inapplicable to attack our hash.

These attacks are proposed by Aumasson and Meier [1]. The points are:

— If the affine part is as sparse as the rest of the polynomials, then there is a
high probability to construct a collision or partial collision.

— There is a way to solve the differential of the hash if we use a cubic con-
struction where the cubic terms are sparse, but this involves searching for a
short vector in a code, and the exact time complexity is unknown.

Both of these ideas apply over GF(2) only, hence our use of GF(16) and larger.
Of course, the specific points still bear more investigation.

7.2 Other Constructions

The key idea here is once we have a sparse construction, we would like to add
some kind of internal perturbation to make system even more complicated. The
key question is about how we add the perturbation. Another idea is to use a
Feistel structure, which might speed up evaluation a lot with random maps,
but requires more set-up and makes any putative pre-image resistance harder to
show. Since the principle is not much different we don’t go in that direction.
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8 Conclusion

In this paper, we present the idea of using random polynomials, and random
polynomials with sparse property to build hash functions. What is new here
are: the cubic construction, the amplify-compress composed quadratic construc-
tion, and the specially constructed systems using compositions of sparse linear
functions.

We present arguments for the security of the system and for the case of sparse
construction. We can improve our ideas with internal perturbation by adding
additional noise into our sparse system. One more idea is to use composite field,
where we explore further field structure to make our system more secure.

It is clear that some of these programming is very preliminary. The idea is
mainly to point out a new direction in developing hash function whose security
relies on a clear hard problems and therefore easier to study and understand,
our work is just the beginning of this new direction and much work need to be
done. We believe the multivariate hash has a very strong potential in practical
applications. Much more work is needed in finding the right constructions and
optimal parameters, and in rigorous proofs of security.
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A Testing

We depict in Fig. 1 some MAGMA-2.13.6 tests we ran, with K = GF(2), 2n
variables and 3n equations. At n = 16 the system started to thrash due to lack
of memory.

Despite the fact that we had a very good workstation with 64 GB of main

memory, this thrashing is perfectly in line with theory. I.e., it should run out of
memory when n = 16.

The tests we did included quadratic, cubic, and a few quartic systems with

number of variable n, number of equations m, and n : m being roughly equal
to 1, 0.8, 0.75, 2/3, and 0.5. We also did systems over GF(2), GF(16), GF(256),
and we went up for as long as the memory allowed.
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Fig. 1. “Sparsely determined random quadratics” in MAGMA

— Systems with every coefficient randomly chosen.

— Systems with e proportion of coefficients randomly picked to be non-zero,
then randomly chosen from non-zero field elements. We tried e being two
percent, one percent, half a percent, and 1 mil (that is 1/1000).

— We tried systems that have about n and 2n randomly picked non-zero non-
linear terms in every equation (this is very sparse).

— Rotated sets (see Section 6.1) which had 3, 4, and 5 non-zero terms in every

row (or every column, when we made a mistake in the program) of the
transition matrices.

In every test using magma, the running time and memory used was close
to each other which verifies the observation made by several people that the
matrices become reasonably uniformly dense in F4 as we go up in degree.
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