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Abstract

The chemist Harold Wiener found W(G), the sum of distances be-
tween all pairs of vertices in a connected graph G, to be useful as a
predictor of certain physical and chemical properties. The g-analog of
W, called the Wiener Polynomial W(G;q), is also useful but has few
existing useful formulas. We will evaluate W(G; q) for certain graphs

G of chemical interest.
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1 Introduction

A structural formula in organic chemistry corresponds naturally to a con-
nected graph, each non-hydrogen atom to one vertex. Distance between
vertices corresponds to the number of bonds between two atoms, which
quantum-mechanically influences physical and chemical properties. In 1947,
Harold Wiener proposed a formula ([30]) for boiling points of alkanes, after

some heuristic reasoning:

b.p. = aW + Bws + 7 (1)

Where (we quote) “W is the sum of distances and w3 the number of pairs of
vertices three apart.” The correlation was surprisingly good, so he published
a few more papers on the same topic. W was rediscovered in the 1970’s, and
in time the mathematical properties were probed to some detail, the most no-
table result of this period being the Merris-McKay theorem relating Wiener
numbers to eigenvalues of trees ([14]). Descriptions of its applications have
abound in the literature since, numbering hundreds of articles. “Topological
indices” — the chemists’ name for a function on a graph — in general and
their applications are discussed in chemical texts such as [1, 18, 28]; surveys
on Wiener numbers and their applications etc. can be found in [7, 15, 18, 33].
Other treatments are in [2, 3, 4, 5, 9, 10, 11, 16, 17, 21, 22, 23, 25, 27].

It is natural to consider generating functions (“counting polynomials”)



when studying something in a combinatorial structure in aggregate, a di-
rect extension to Wiener’s idea was mentioned early by Haruo Hosoya, and

formalized as well as investigated in some detail by Sagan and Yeh:

Definition 1 ([11, 24]) Let dg : V xV =N be the function' representing
minimal distance between vertices of the connected graph G = (V, E). The

counting polynomial of distances on G- the Wiener Polynomial of G— is

WG= Y gt
{uw}e(y)

we also define W(u|G;q) = Z q%®) and W(S1, S2|G; q) = Z i),

eV ueS1,vES2
These are g-analogs of W(G), W(u|G), and W(S1,852|G;q) ([13]). Each
quantity relate to its g-analog in the usual manner, e.g. W(G) = dqu(G; q)|g=1-

Like most generating functions, Wiener polynomials has some indepen-
dent interest: an example ([24]) is its linking the absolute Poincaré poly-
nomials of a Coxeter group and its induced graph. Knowing how to com-
pute Wiener polynomials would also yield Wiener’s “polarity number” ws.
Wiener number laid dormant for a decade and a half before being redis-
covered at least partly due to the scarcity of efficient formulas for ws in
chemically interesting graphs. There are a few other practical situation in

which points at a given distance needs to be counted.

! We shall write N for the set of non-negative integers and P positive ones in this paper;
other notations for convenience we will use are u for the singleton set {u}, and d for dg
when confusion is unlikely!



Wiener polynomials of simple graphs are well-known:

W(Cwia) = n |CEML=D ), @)
W(Chiria) = @n+1)g L Q
WP q) — “ ;i qld=1)  ng A
(Piq) = ;(H—J)q = @ (4)

Sagan and Yeh ([24]) discussed certain relationships that allows us to
construct Wiener polynomials of graphs formed by some binary operations
from simpler graphs, such as the paths P, and cycles C,. The most useful

of these relations pertain to the Cartesian product:
W(G x H;q) = 2W(G;q)W(H; q) + [V (H)W(G;q) + [V(G)[W(H; q).

In particular for the m xn Chessboard Cby, , = P, X Py:

W(Cbmig) = 240" =1 = m(g® —1)]2q(q" — 1) —n(g2 —1)] mn

2(q — 1) 2
(5)

The authors ([12, 13, 31, 33]) have presented ways to compute Wiener
numbers (and occasionally polynomials) for some chemically useful graphs.
However the computation of Wiener polynomials often present taller obsta-
cles than when dealing with Wiener numbers, where neat formulas often
result by cancellation. When manipulating generating functions this can

become anywhere between difficult to impossible. For example, this elegant



result is not easily generalizable:

Proposition 1 (Merris ([14])) Let A(T) be the adjacency matriz of the
tree T and D(T) be the diagonal matriz of the same size with the degree

as the entry corresponding to each vertex. The Laplacian matriz L(T) is

defined as D(T) — A(T). Merris showed that

W) = V)Y 5

where X ranges over all eigenvalues of L(T).

In Sec. 2 we will treat the problem of how to compute Wiener Polynomi-
als of polygonal chains; these graphs (“motley chains”) are the abstractions
of aromatic compounds and their Wiener numbers and polynomials are of
significant interest. In Sec. 3 we will deal with Wiener polynomials for some
regular 2-dimensional hexagonal patterns. These graphs (“hex carpets”)

depicts slices of graphite.

2 Wiener Polynomials of Polygonal Chains

Definition 2 ([32]) A motley chain is a graph of concatenated, or edge-
sharing, polygons. Given m ordered pairs of non-negative integers S =
(a1,b1),...,(an,by), we may create a graph as follows: take the graph Cbg i1 =
P, x P11 and subdivide the upper and lower edges by inserting a; and b;

extra vertices. respectively (see Fig. 1). The resulting graph is the motley



chain associated with S. Since only a1 + b1 and a, + b, matters we will

denote equivalence classes as:

az agz -+ Gp_1
S = (a1 + bl) (an + bn) .
bo b3 -+ bp_

When each cycles is of even order (as in Figure 1(b)), we call it an even
motley chain. Let integers k; and j; satisfy |j;| <ki, 2 = 1...n, then we
write

E=ko(k1)j, (k2)js * - (kn)jn knt1

as a representation for the even motley chain in which the i-th polygon has
2(k; + 1) wertices, of which kj + j; + 1 are along the lower edge, or 2j; more
than those along the upper edge. For obvious reasons, k; is called the length

of the i-th cell. }CEZ?;L& k; is the total length of the chain.

(a) A Motley Chain

IS EBEEHHEE
% 3, 2 L 2 &L L 2 3, &
(c¢) Another rendering of (b), de-
(b) An Even Motley Chain picting a real compound

Figure 1: “Chains of motley gems”



It is useful to compare a “straight” Ey = kok1 - - - kn+1 even motley chain

(all the j;’s are 0) to P41 X P, (a chain of K squares). Noting that when

. pJ -3 pj -2 pj -1 p] I pj +1 pj +2
= W :

Figure 2: Evaluating Wiener Polynomials of straight even motley chains

any 2k + 2-gon is cut into k squares, distances between other vertices do not

change, we get (using Eqs. 2 and 5):

Proposition 2 ([33]) The Wiener polynomial of the straight even motley

chain Ey to be (independent of the order of the polygons):

+1 ki+1 _ 1
W(Ep; q) = W(Cbic+1,2)‘|‘2 qu—l [(ky - 1)qqu -
J

The general idea will be to start with Ey = kok1ka - - - knkn+1, which is E=
ko(k1)j, (k2)js - - - (Kn)jnkn+1 with every kink straightened out, and morph it
into E one rotation at a time, starting from the left: the /-th step in the
process is rotating the ig-th polygon from being “straight” into the “bent”

position specified by (k;,);;,). But first we need this generally useful result:

Proposition 3 (Shelling Lemma, [33]) Let G = (V,E) be a connected
graph, and partition its vertex set V into VoW Vi W Vo W --- W Vi in such a

way that the restriction of dg =d to G;j = Gly; is the same as dg; (hence,

\{



each V; is connected). Also let G; be the subgraph induced by Lﬂgzl Vi, then

W(Giq) = D WG+ Y WG Gjiq)

k
=0 0<i<j<K

<

k
W(Goiq) + Y | D W(ulGssq) — W(Gj9) — IV5l| - (7)

J=1 |wev;

/\““N"M-- —me ‘_,,—“'"-'\,
’ S,
o \Y
! =
—————— o - -.-!i.
! R ;
i length= K !
i :!.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.._'.-.
3 !
N, !
N, !
2

Figure 3: Changes after one rotation

The portion of the chain to the left of a bend will be the “residue” R,
and the remaining straight portion on the right the “tail” 7'. Now introduce

just one bend (nonzero j) into a straight chain, so that R is also straight.

Lemma 4 Let there be only the one bend (k;);, (see Fig. 3), where i = iy

s the only index corresponding to nonzero j;. Then

qK'_lqK_l
g—1’

W(Eo; q) — W(E;q) = ¢+l (g + 1) (2% — g — 1) pp
where K and K' are the length of R and T, respectively.
Proof: Use Prop. 3 with R, the polygon of the bend, and T as the parts.

When we rotate the i-th polygon only the distances from R to T change.



These distances originally contribute to the Wiener polynomial the sum

K K’
_ g" —1 g® —1
qg—1 qg—1

which now becomes (all pertinent distances going through the marked path):

Before we proceed, we need to tidy up some notations:

ig—1
Kg = Zk}h,
h=0
n+1
Ké = Z k:h,
h=i;+1
4
|jil|a if jiz jiz_l > 07

Joe = 9 il -1, ifji, ji,_, <0

0 else.

As we shall see, K, and K are the sizes of leading and tail partial chains
(Ko =0). 7 represent the “kink” at the ig-th polygon, and Ly is the ‘true’

length of the leading partial chain. Now to account for more than one bend



or kink in a chain (see Fig. 4). For each bend (k;,);,,, let us be the top

o~

o "l paths to Ry_;"go through here N —— .
........... : Sy ———— F e
R|_1 : : l\', T “
length= Ky straight part of;iR ! :
- - ~: - ‘i --------------- " ------------ -
% length=K, —K_;} v length= K i
: PPN !
f,,”_ . J bl TR B R 7

Srmnan® u’:ul_l R TN, Rt

Figure 4: The two Segments of R

vertex between the (i — 1)-th polygon (and the rest of the remaining chain
Ry) to the ip-th polygon if j, > 0, and the bottom vertex if j, < 0. Also let

Xe(q) = W(u¢|Ry; q), which we will need later:

Lemma 5

W(Eo;q) — W(E;q)

K K;,—K,
gttt —1 gt —1 1o |4 3
= > (a+1) < | ){(q——1> gFi >l (2gl00 ) — g — 1)
0

b (qeKim1 _ gKe=Kima=ii) Xf—l(Q)} (8)

q

Proof: In general the residue Ry bends, but comprises one straight segment
(effectively two paths of length Ky, — K,_1) attached to the £-th bend, and
a remainder Ry — 1 beyond it. Use the Shelling Lemma with the polygons

at the kinks and the straight segments in between as the parts. So the ¢-th

10



rotation decrease the Wiener polynomial by

KZ -1 qufK[_l -1

gFie 2710l (1) (2¢7ie —g—1) 4 +(contribution from Ry_;

qg—1 qg—1

The term involving Ry 1 can be deduced thus: any shortest path from
T into Ry 1 must traverse the path uw. So the partial Wiener sum starts

out as (again using the Shelling Lemma)

Kg—Kp_1—|jiy_y | +kiy+1 ¢t —1
W(ue—1|Re-139) - q SV TR (g + 1) =1

and is scaled down by a factor of ¢%¢, where j is the kink defined earlier. O

Now we are ready for the finale:

Theorem 6 Let E=Fky(k1);,(k2)j, - (kn)j.knt+1 be an even motley chain,
with ezxactly ji,, Jiyy - - -5 Ji,, Non-zero among all the j;. With notations as

above, the Wiener polynomial of E is given by:

qkj“ -1

g+1 2q"
W(E;q) = W(Cbiii;9) + Y =1 (kj —1)g———— — (k; + 1)q
J

qg—1 qg—1

K -1 AT B W .
S (g+1) (qi) { (q—) g2l (9glisel — g — 1)

7 g-1 g-1

boa 1) (<R - g ke |20 21 qu“l_L”
g-1 h=1

From Eq. 9 we can deduce all previous results about Wiener numbers and

polynomials of an even motley chain; actually Eq. 8 suffices when we note

11

_1_1

)

| o

=l



that there are 2K, vertices in Ry and hence that many terms in Xy(q).

18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

3 2 1 2 1 1

19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2

18
(a) A straight Chain: X =q(q+ 1) (qq — 11)

This section is effectively only 15-long, even if its ‘size’ should be 16

18 17 1617161514 13 12 11 10 9 8 5 4 3 2 1
17 16 15 “ 13 12 i 10 8 5 4 3 é
(b) Curving one way: X = q(q+ 1) (q )
q—
16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

3. | 2 1 2 1

17 16 15(1617161514 13 12 11 10 9 8 7 6 5 4 3 2

This segment ‘should’ have length 16, but only span 14

. g% -1 g —1
(c) Curving the other way: X = q(q¢+ 1) ( -1 +4q pp 1)

Figure 5: Partial Wiener Polynomials for almost-straight Even Chains

Proof: We still need to find X;(q). First we look at a few diagrams: As
K;

g 1 ) When

for hex chains, it’s easy to see that X (q) = q(q¢ + 1) ( -
the chain develop a kink, the chain effectively became shorter. Note that

the upper and lower edges differ, due to the starting location u (which is

on top or bottom when j; is positive or negative, respectively). X becomes

12



gfii—1 ¢ -1 o :
q(g+1) ( p— + 4 | ) after one kink is introduced, where p is the
‘effective length’ between the kink and the endpoint u, and j is the amount
of the kink, i.e. |j| when it is the first curve of two in the same direction, and
|7] — 1 otherwise. Fig. 6 shows what kind of terms appears as the polygons

are rotated one by one to create our motley chain. We can now verify the

important relation:

Xe(q) = q(qg +1)

Le _q a Ji, — 1
q Le—Ly [ 9 1
e (7)) w

4 13 I2 11 10 9 8 7 6 54 3 2 1
20 3| 2| L | 2| % | b| Al 3k
15 14 sssuse 1 0 9 8 7 6 5 45432

14_1

2-1
Figure 6: A Chain with many Turns: X = q¢(¢ + 1) (qqil + qu%}—l +¢®+ q3)

Now sum up the terms in straightforward fashion to get Eq. 9. O
We sketch with some examples how to obtain the Wiener polynomials
of polygonal chains involving odd cycles. Following [32], we term a motley
chain zigzagging or straight (Fig. 7) if for at least one representation S =
(a1,b1),- .., (an,by), we have
J

{D (i —b))[1<j<n} C {0,1}or {0, ~1}.

=1

13



Figure 7: A ‘Straight’ Motley Chain

We aim to work out the Wiener Polynomials of motley chains, starting
with straight ones and working our way down the line, adding terms for each

bend or twist in a similar way to the above.

Lemma 7 (Subdivision of even cycle) A polygonal chain of one (2m +

1)-cycle, one 2(k+1)-cycle, and one (2n+1)-cycle has its Wiener polynomial

given by
k-1
w <(2m—3) (2n—3)>;q
k-1
g" —1 (¢+1)(¢" - 1) " -1
= (2 1 k+1) | —————= —1 2 1 -2
0+ gl =2+ e 1) [ ET +em+ el 2
N qn+1+m+k +4qn+m+k_qn+m+k71_2q2+k_2q1+k_4q2+m+4q3+4q2_4qn+2
(q—1)?

In particular the Wiener polynomial of fused (2n + 1)- and (2m + 1)-cycles,

or W ({(2m — 3), (2n — 3)) ;q) is given by

¢"¢® = 1) +4¢°(¢™ ! — D)(¢" ! — 1) —2¢° + 2¢7
(g—1)? '

W(Cont1; ) +W(Comt1;q)—q+

Denote a straight chain of n repetitions of fused cycles of ni, no, ..., ng

sides in that order to be Z,, n,, .. n,(n). So a straight motley chain com-

14



I ST SN

(a) Fragments

All the‘circles marked here are brought closer to . . .

these4 ‘gray’ vertices.

(b) Process of subdivision

Figure 8: Septagon-Pentagon chains

posed of n pairs of alternating pentagons and septagons would be Zs7(n).
Since the chain fragment consisting of one pentagon and one septagon can
be created from partitioning a decagon (which has length 4), and the differ-
ence between its Wiener polynomial and 4 fused squares is W((1, 3);q) —
W(Cbs2;q) = —¢° + 3¢ — 2g, One would expect W(Z5 7(n); q) to be given
by W(Cbign+1,2; ) — ng(q® — 1)(¢* — 2), but this is not so. As we subdi-
vide one of the decagons we have the four blobbed vertices marked in Fig. 2
above, each getting closer to each of the circled ones by 1.

So, to get W(Zak+1,2m+1(n); ¢), we have to add in addition to the differ-

ences between the fragments, which is n [W((2k — 3, 2m — 3); q) — W(Cbym2;9)],

15



the term

n—1 (qk — 1 gktm-1i g™l — 1 gktm-Dik+1 1)

—\¢—1 q—1 * q—1 q—1

<

which ends in this lemma, which we can use to obtain the Wiener Polynomial

of all generic motley chains inductively.

Lemma 8 (one zigzagging straight chain)

W(Zok+1,2m+1(n); )

= W(Cbn(k+m—1)+1,2; Q) +n [W(<2k -3, 2m — 3); Q) - W(Cbk+m,2; Q)]

-1 k_l k+m—1 mfl_l m
(:_ - (qm_1 L 2) L @ =1 . _+1)(;1 )q (q(k+m—1>(n—1) _ 1)

3 2-dimensional Patterns

Mathematical chemists posed the question of computing the Wiener num-
bers of graphs with 2-dimentional hexagonal patterns (called hezagonal an-
imals or hex carpets — they resemble a hexagon tiling of the floor) a long

time ago. Eventually a solution was found via this idea:

Definition 3 (Squaring) A graph G = (V, E) representing a given hezag-

onal animal is said to be embedded in the set of lattice points 72 if V C 7.2,
EcL=({{(7), 0@+ 1,5} €Z}U{{(,5), (i,5 + 1)}i, j €Z}

16



(i.e. , and all edges in E can be drawn as line segments of length 1).

A graph G embedded in the lattice points is said to be partitioned into
‘row-paths’ R; if V = R; such that each R; contains all vertices with
ordinate j and is isomorphic to a path. It is easy to see that any lattice
embedding of a hex carpet with a partition into row-paths will show each
6-cycle (hezx) as the boundary of a domino (horizontal 2 x 1 rectangle). Let
G = (V, E) be a hexagonal animal lattice-embedded, then the subgraph of the
lattice grid induced by V

G =(V, (‘2,/) NnL)=(z*L)v,

is defined as the squaring of G.

We will in the rest of the section demonstrate how to compute the Wiener

polynomial for one case of the hex carpets.

SN SN N N L
B | | | | |
\‘/ \‘/ \‘/ \‘/ \‘/ o |

SN N NN L1E | | | |
R N B VA

NN N N NS |

vy L

SN N N N | | | |
L M

NN NN NS

(a) Rectangular (b) RE 3
carpet Rs 3

Figure 9: A Rectangular Carpet

17



One basic families of hex carpets is shown in Fig. 9 with its squaring.

Lemma 9 (Change of distance induced by squaring) If v = (0,0) €
Ry and v=(i,j) € Rj are two vertices j(> 0) rows apart in a lattice embed-
ding of G = (V, E) and the row-path partition V. = RyW R; W--- W Ry, then

dge (u,v) = |if + j; and

|3 + j 7 <lil;

dla (wv) = fil+j+2 [ 552 5> i), {0,0), 0, )} ¢ B (1)

i+ 2[5 > il {(0,0), (0, 1)} e B

We present Fig. 10 in lieu of a formal proof:

S @ﬁﬁ?ﬁ?ﬁﬁﬁ

(a) Before (b) After

Figure 10: Effects of Squaring on distances in carpets

Wiener polynomials of chessboards are easy. The following will show
that careful manipulations of the changes induced by during squaring will
yield the Wiener polynomial of any hex carpet in each of the three major

families (see [12]), using similar techniques as that for Wiener numbers.

18



We compute here as an example the Wiener polynomial of the carpet R, ;.
Taking the squaring of R,, ;, we get the chessboard Cbyy, 41,2k, whose Wiener
polynomial W(Cbap1,2k;¢) is given by

[2¢(¢*"*! — 1) — (2n + 1)(¢* — 1)][2¢(¢** — 1) — 2k(¢®* — 1)]
2(qg —1)*

—k(2n +1).

We hit a snag. Instead of differences as when dealing with Wiener num-
bers, we must find the actual terms of the respective Wiener Polynomials.

Cancellation becomes difficult and patterns can be hard to locate.

Lemma 10 The difference terms in the Wiener polynomial induced between
the marked vertez p and the next £ rows of vertices (as shown in Fig. 10) is

given by:

1— q2€ quZ 1— qQZ—Z (e o 1)q2€—2)
+ (. _ 3 _ 4 _ ¢ ’
Bplba) = a [(1 2 1-¢] " [P 1-¢? (fbefore’)

2
g [(1 —qf) 1= 1 —(12;] (after)

1—gq 1—g¢q 1—gq
_ _eq212+2 B q2€+2(q+2) N q£+1(1 +q) B q (12)
l-qg (I+9(1-9* (1-92 (1+901-9%

Proof: By direct summation of the patterns in Fig. 10. O
The formula above works when the vertex in question is on the “far”

side of a hexagon; move it up one row (or look the other way), then we get

A, (¢;q) which is equal to ¢ Aj (£ — 1;q).

19



If we now sum over the whole of ]A%n,k, always taking the pyramids of

numbers (powers of t) upwards, then we get a differential of

2k—1 1\ (VL
> [+ Dz + o0+ a5 ).

which is rather hard to work with, and we do better this (equivalent) way:

2k—1 k—1
don [Af(a) + A, ()] + D [AF(269)(1+q)] -

Now we evaluate the sums in £ using of Eq. 12 and get:

Lemma 11 The total difference in Wiener Polynomials induced between

the hex carpet R, and the row-paths which contain it is given by

AW(R) = o [0 (g~ 2k (-9 (- ™)
2"+ kg ¢*lg+1)

. _ _

(1-q2(-¢ (-9 (1-9g
" 2(2¢* + ¢* + 24> + ¢ +2) + (a+24° + 2¢* +2¢° 1 ¢7)
(1+¢q) (1 —q)*(1+4¢%?2 o

+

The formula above sums up all the pyramid-patterns of difference terms,
assuming them to be complete throughout. Which it isn’t, unfortunately,
since the hex carpets have finite width. Ergo we must adjust for the incom-
pleteness of these pyramid around the edges. As in [12], we would take two
rows, and consider exactly which terms in these patterns ‘disappear over the
edges’. Let’s call the row-paths in R,, ;, (in order) Lo, Mo, L1, M, ..., Ly_1, Mj_1.

20



We look at just one end of the rows Ly and M, (see Fig. 11), and call the

difference terms X, as in [12].

‘actual’ carpet vertices
C T 1 [ T Qoo L

fghost! vertices l [

M;

(a) Before: X (b) After: X

Figure 11: “Edge Effects”, as seen before and after the squaring

~ g+ 1){gmr? 1— g™ B mg*™ 4 2mt3 1—g*m? _(m - g™ 21 .
( - i-@F  1-¢ |

but this is insufficient — we need to do four kinds of boundary effects! On

one side of My and M, (see Fig. 12) would be

2

bt = 07 { ()t s [ [t s DA

Similarly, for Z,,(q) (from Ly to L,,) and U,,(q) (between My and L,,):

m+1 m _ 1—g?m-1 2m — 1
Zm(q) = ( 5 )q4m+1+m(m—1)q4m+(2)q4m 1—q2m+1[ (13(1)2 . 1_)3

m B B m _ 1_q2m—2 Qm_2q2m—2
Um(q) — (2)q4m 1+(m_1)2q4m 2+(2>q4m 3_q2m[ (l_q)2 _( 1_)q

21



‘actual’ carpet vertices | ‘ghost’ vertices
T e M | 0 Y
e v TTTT i, |
I |§§ T N N 7 S
(a) Before: Y (b) After: Y

Figure 12: A different “Edge Effect”, as seen before and after the squaring

‘actual’ carpet vertices
CL 1 [ T Joreso; L
| “ghost" erticés

1 @@@@ L,
L T T 1 A '

L T T T 1 %ﬁ
[ T T 1

(a) Before: Z (b) After: Z
‘actual’ carpet vertices ghost’ vertices )
C T T 1T T Jl e
T e M S ey
C T T T T 4 [ 17 C T T ] '
H|||||| [ l\|||||| [
C T T Todo ., LT T T To¥d L
C T T ] % * T T 1 % :
(c) Before: U (d) After: U

Figure 13: The two other “Edge Effects”, before and after the squaring

Finally, we can finish the computation for W(R,, ;;), when n > k:

k—1
W(Ry k3 q) = W(Cbap 125 9) +FA"W(R {Z (k=€) [Xe(q) + Ye(a) + Zi(q) + Ue((])]}-
=1

22



The last pair of braces can be evaluated by expanding the summand in £,

then sum over £ = 1..k — 1 to get:

k—1

> [Xe(9) + Ye(q) + Zelq) + Ue(g)]

=1

k—1
_ o 20 [(1+9°(1+¢*)] , 4 [A+9(1+¢*)(1—2¢—2¢> - 2¢° +¢*)
B ;{g ! [ 2¢° ] ta [ 2¢°(1 - q)

w [A+0?] o [(L+9)?
+q{u—m4 q[u—mJ}

k}2 q4k:—|—1 k (q4k:+5 + 2q4k+4 + 2q4k+3 + 2q4k+2 + q4k‘+1 _ 2q3)

T 2(1—gq)? 2(1-¢)* (1 —q*)

> (1—q%) [¢*(¢® +¢®+2¢* +3¢® + 26> + g+ 1) — (® + ¢* + ¢ + ¢* + )]
(1—-¢)? (1—q¢*)?

We have arrived at the Wiener polynomial of one of the hex carpets:

Theorem 12 When n > k, we have

2q(¢*+! — 1) — 2n +1)(¢* = D][2g(¢** — 1) — 2k(¢* — 1)]
2(¢—1)*
- o g -2k (-9 (1™
B 2q4k—|—2 kq q2k+1(q_|_ 1)
C-g?(-@) (-7 ({T-qp
g 220" + * +2¢> + q+2) — (¢ +2¢° + 2¢* +2¢° + ¢')
(1+4q) (1-q)3 (1+¢?)?

2(1-¢)? 2(1-¢)* (1 - ¢

> (1—¢%) [¢*(¢® +¢® +2¢* +3¢® + 26 + g+ 1) — (® + ¢* + ¢ + ¢* + q)]

W(Rnkiq) = —k(2n +1)

(1-q?(1—-q")?

There is an “explicit formula” for each of the hex carpets — finding

Wiener polynomials of Sy, , and P, j (as defined in [12]) and their variants is
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a similar process except for fiddling with extra vertices to bring the squaring

up to a more symmetric grid. Each result will take up half a page, however.

4 Summary and Discussion

Even in the new millennium, Wiener numbers and polynomials is still a

topic where interesting problems abound.

1. Wiener Polynomials for branched or fused polycyclic chains, nor for
that matter polycyclic rings has currently known non-recursive deriva-
tion. Wiener numbers of few other chemically interesting families of
graphs with structure in more than 1 dimension has been determined

other than the regular hex carpets as defined in [12].

2. It is also desirable to extend formulas for Wiener numbers to Wiener
polynomials, but many results cannot be easily generalized. There are
several nice propositions which does not yet have g-analogs, such as

the elegant Eq. 14 and similar results on trees.

3. A formula for the Wiener number of a hex crown (see [12]) was proved
by the present authors ([34]), but computing the Wiener polynomial is
not easy due to the same problem that precluded Eq. 14 from having

a nice g-analog, despite the high degree of symmetry.

The problems mentioned above in extending results from Wiener num-

bers to polynomials are exemplified by the following two propositions, aside
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from the aforementioned Merris-McKay result:
Proposition 13 The following holds for a tree T

1. For each vertex x € T that has degree at least 3 (a “branch point”),
let F(z) be the set of components of the forest T\{z}, then Gutman

showed that

T +1
W(T) = (\ |3 ) S S mmm
z € V(T) {T1,T2,T3}e(Fgw))
deg(z) > 3

2. It was shown by Wiener himself that if for each edge e we call ni(e)

and ny(e) the number of vertices to either side of the edge e, then

W(T) = ni(e) na(e).
e€T
Eqg. 14 has a very good combinatorial interpretation and useful applications.
Most recently ([29]) it was used to identify the high alkane isomer with the
smallest Wiener Index. but no analogous formula for Eq. 14 or either of the
two other elegant results in Wiener polynomials exist so far! Many proofs
about Wiener numbers depends on a counting argument which may simply
be absent present when handling generating functions. This explains why
formulas about Wiener numbers just don’t generalize very easily at all to

Wiener polynomials.
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Figure 14: Crown of Order 6

In short, there are still interesting work remains to be done.
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